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1 Introduction
The concept of a graph being well-connected is often linked to how closely the graph resembles the complete
graph. This is because, like the complete graph, a well-connected graph should resist being split into disjoint
parts on omission of a small number of edges. However, designing and maintaining large graphs that mirror
the structure of the complete graph is impractical due to the excessive number of direct connections required.
For example, in several applications where networks are modeled using graphs, each vertex is responsible for
storing information about its incident edges. In a dense graph, this would mean a single vertex must store
data about an overwhelming number of edges, leading to significant storage and maintenance costs. Thus,
there exists a close relation between the connectivity and density of a graph. High connectivity requirement
is often a natural goal in applications, but it typically comes with increased density, which may be costly.
In this proposal, we present our progress in the study of these two properties—we present published results,
ongoing work, and open problems for future research. In particular, we focus on the following fundamental
question in network design and optimization.

Question 1. What is the best way to update a given network to achieve a (high) target connectivity or (low)
target density?

We note that addressing Question 1 begins with specifying its two abstract components—the network
model and the permissible updates to the network. The network models we focus on are graphs and hyper-
graphs—graphs are the most natural and intuitive way to represent networks involving pairwise interactions,
whereas hypergraphs naturally model more complex relationships such as multi-way interactions that can-
not be captured by traditional graph edges. The types of network updates that we consider categorize the
problems presented in the proposal into three broad categories:

• Deletion Problems (for Density Reduction). We consider the operation of deleting endpoints
(and their incident connections) to reduce network density.

• Augmentation Problems (for Connectivity Enhancement). We consider the operation of
adding new connections to enhance network connectivity.

• Splitting-Off or Connection-Reconfiguration (for Connectivity Preservation). We consider
the operation of reconfiguring connections amongst endpoints in order to simplify the network without
loss in connectivity.

We primarily focus on deletion problems in graphs, and augmentation and splitting-off problems in
hypergraphs as our main results. We then go beyond concrete network models and consider these problems
in the more abstract regime of submodular and supermodular functions. Submodularity is a unifying theme
across all results we will discuss in this proposal—this theme will become more apparent as we delve further
into the technical sections. We now describe some background and notation, and then give an overview of
the specific questions of interest in the rest of the proposal.

Preliminaries. A hypergraph G = (V,E) consists of a finite set V of vertices and a set E of hyperedges,
where every hyperedge e ∈ E is a subset of V . We will denote a hypergraph G = (V,E) with hyperedge
weights w : E → Z+ by the tuple (G,w) and use Gw to denote the unweighted multi-hypergraph over
vertex set V containing w(e) copies of every hyperedge e ∈ E. Throughout this work, we will be interested
only in hypergraphs with positive integral weights and for algorithmic problems where the input/output is
a hypergraph, we will require that the weights are represented in binary. If all hyperedges have size at most
2, then the hyperedges are known as edges and we call such a hypergraph as a graph.

Notation. Let (G = (V,E), w : E → Z+) be a hypergraph. For X ⊆ V , let δG(X) := {e ∈ E : e ∩ X ̸=
∅, e \ X ̸= ∅}. We define the cut function d(G,w) : 2V → Z≥0 by d(G,w)(X) :=

∑
e∈δG(X) w(e) for every

X ⊆ V . For a vertex v ∈ V , we use d(G,w)(v) to denote d(G,w)({v}). We define the degree of a vertex v to
be the sum of the weights of hyperedges containing v—we note that the degree of a vertex is not necessarily
equal to d(G,w)(v) since we could have {v} itself as a hyperedge (i.e., a singleton hyperedge that contains
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only the vertex v). For distinct vertices u, v ∈ V , let λ(G,w)(u, v) := min{d(G,w)(X) : u ∈ X ⊆ V \ {v}} –
i.e., λ(G,w)(u, v) is the value of a minimum {u, v}-cut in the hypergraph. If all hyperedge weights are unit,
then we drop w from the subscript and simply use dG and λG.

1.1 Splitting-off in Hypergraphs
The splitting-off operation in undirected graphs is a simple yet powerful operation in graph theory. It is a
reduction operation that enables a vertex to exit the network by informing its neighbors how to reconfigure
the lost links among themselves in order to preserve their degrees. Lovász [84, 86] introduced the splitting-
off operation and showed the existence of the operation to preserve global edge-connectivity under certain
conditions. Mader [87] showed the existence of the splitting-off operation to preserve local edge-connectivity
(i.e., all pairwise edge-connectivities) under certain conditions. Both Lovász’s and Mader’s results also admit
strongly polynomial-time algorithms [50,53,90]. Owing to the inductive nature of the splitting-off operation,
Lovász’s and Mader’s results have enabled fundamental results in graph theory as well as efficient algorithms
and min-max relations for numerous graph optimization problems. In fact, Mader [87] illustrated the power
of his local edge-connectivity preserving splitting-off result by deriving Nash-Williams’ strong orientation
theorem [94] (also see Frank’s exposition of this derivation [48]). Subsequently, the splitting-off operation has
been used to give constructive characterizations of k-edge-connected and k-tree-connected graphs [50] and to
address problems in edge-connectivity augmentation [4,47,49,50,90], graph orientation [51,74], minimum cuts
enumeration [56,65,91], network design [27,36,57,70,85], tree packing [19,68,76,78], congruency-constrained
cuts [92], and approximation algorithms for TSP [20, 57]. Designing fast algorithms for global/local edge-
connectivity preserving splitting-off remains an active area of research (e.g., see recent works [24,25,26,79])
due to these far-reaching applications.

Hypergraphs offer a richer and more accurate model than graphs for several applications. Consequently,
hypergraphs have found applications in several modern areas (e.g., see [82,96,102,111]) and these applications
have, in turn, driven exciting recent progress in algorithms for hypergraph optimization problems [2, 7, 28,
29,31,37,38,46,54,60,69,71,72,75,80,99,104]. The far reaching implications of the splitting-off operation in
graph theory and optimization naturally raise the following question.

Question 2. Is there an analogue of the splitting-off operation in hypergraphs?

We note that Question 2 asks for a new operation on hypergraphs that is degree-preserving and allows a
vertex to leave the hypergraph on repeated application of the operation—such an operation has not appeared
in literature before. In Section 2, we answer Question 2 by defining such an operation (see Definition 2.1).
We note that the far-reaching applications of splitting-off arise because of the existence of local connectivity-
preserving splitting-off in graphs by Mader’s Theorem. This raises the following question.

Question 3. Does there exist a local connectivity-preserving complete splitting-off in hypergraphs?

One of our main result (see Theorem 2.1) answers Question 3 by showing an analogue of Mader’s Theorem
for our definition of splitting-off in hypergraphs. We then turn our attention to the algorithmic aspects of
computing a local-connectivity preserving complete splitting-off in hypergraphs, i.e. efficiently computing a
hypergraph obtained by repeated local-connectivity preserving splitting-off operations to isolate a particular
vertex. For this, we specify the representation of the input hypergraph—we consider weighted hypergraphs
representing multi-hypergraphs, where all hyperedges are distinct and the weight of a hyperedge (represented
in binary as part of the input) indicates the number of copies of the hyperedge present in the hypergraph.
Then, the following question summarizes the algorithmic challenge.

Question 4. Can a local connectivity-preserving complete splitting-off in weighted hypergaphs be computed
in strongly polynomial time?

Our main result (see Theorem 2.1) also answers Question 4 affirmatively. Finally, due to the widespread
applications of splitting off in graphs, it is natural to wonder about the applicability of the new splitting-off
operation for hypergraphs.
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Question 5. Are there interesting applications of the local-connectivity preserving splitting-off operation in
hypergraphs?

We answer Question 5 by showing two applications of our local-connectivity preserving splitting-off
operation. First, we show that the operation can be used to give a constructive characterization of k-
hyperedge-connected hypergraphs (see Section 2.3.2). We also give an alternate proof of an approximate min-
max result for Steiner rooted connected orientations of hypergraphs by Kiraly and Lau [74] (see Section 2.3.1).
As a special case, we obtain a simple proof of Menger’s Theorem.

Extensions to symmetric skew-supermodular functions. Several results on hypergraph connectivity
are actually special cases of general results involving submodular functions—see [50] for several such examples
in literature. In Section 2.4, we mention how this is also the case for our splitting-off result. In particular, we
consider the algorithmic problem of systematically converting a weak cover of a symmetric skew-supermodular
function to a strong cover of the function. The result presented in this section (see Theorem 2.5) captures
our local-connectivity preserving splitting-off as a special case.

1.2 Degree-Specified Hypergraph Connectivity Augmentation.
A fundamental problem in graph optimization is the problem of augmenting a given graph using edges so
that it satisfies target connectivity requirements and degree specifications—formally defined below.

Definition 1.1 (DS-Graph-CA-using-E). Degree-specified Graph Connectivity Augmentation using Edges
problem is defined as follows:

Input: A graph (G = (V,EG, cG : EG → Z+),
target connectivity function r :

(
V
2

)
→ Z≥0, and

degree requirement function m : V → Z≥0.
Goal: Verify if there exists a graph (H = (V,EH), wH : EH → Z+) such that

(1) b(H,wH)(u) = m(u) for every u ∈ V ,
(2) λ(G+H,cG+wH)(u, v) ≥ r(u, v) for every distinct u, v ∈ V ,
and if so, then find such a graph.

Watanabe and Nakamura [112] introduced DS-Graph-CA-using-E for the case of uniform requirement
function (i.e., r(u, v) = k for all distinct u, v ∈ V for some k ∈ Z+) and showed that this case is solvable in
polynomial time in unweighted graphs. Subsequently, Frank [47] gave a strongly polynomial-time algorithm
for DS-Graph-CA-using-E. Since then, designing fast algorithms as well as parallel algorithms for DS-
Graph-CA-using-E has been an active area of research [11, 12, 19, 23, 49, 53, 79, 93]. The last couple of
years has seen exciting progress for the uniform requirement function culminating in a near-linear time
algorithm [24, 25, 26]. In addition to making progress in the algorithmic status of the problem, these works
have revealed fundamental structural properties of graph cuts which are of independent interest in graph
theory.

Remark 1.1. We note that DS-Graph-CA-using-E is a feasibility problem. There is a closely related
optimization variant where the goal is to find the appropriate augmenting graph (H = (V,EH), wH : EH →
Z+) with minimum total weight

∑
e∈EH

wH(e). This optimization version is different from the NP-hard
min-cost connectivity augmentation problems (like Steiner tree and tree/cactus/forest augmentation) whose
approximability have been improved recently [21, 59, 107, 108, 109]. All algorithms to solve the optimization
version [11,12,19,23,47,49,53,79,93,112] reduce it to solving the degree-specified feasibility version and so
we focus on just this version in this proposal.

We consider the following extension of DS-Graph-CA-using-E to hypergraphs.

Definition 1.2 (DS-Hypergraph-CA-using-H). Degree-specified Hypergraph Connectivity Augmenta-
tion using Hyperedges problem is defined as follows:
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Input: A hypergraph (G = (V,EG, cG : EG → Z+),
target connectivity function r :

(
V
2

)
→ Z≥0, and

degree requirement function m : V → Z≥0.
Goal: Verify if there exists a hypergraph (H = (V,EH), wH : EH → Z+) such that

(1) b(H,wH)(u) = m(u) for every u ∈ V ,
(2) λ(G+H,cG+wH)(u, v) ≥ r(u, v) for every distinct u, v ∈ V ,
and if so, then find such a hypergraph.

Szigeti [106] showed that DS-Hypergraph-CA-using-H can be solved in pseudo-polynomial time. In
particular, if the target connectivity function r :

(
V
2

)
→ Z≥0 is given in unary, then the problem can be

solved in polynomial time. Since DS-Graph-CA-using-E can be solved in strongly polytime algorithm, we
arrive at the following natural question.

Question 6. Does there exist a strongly polynomial time algorithm for DS-Hypergraph-CA-using-H?

Attempting to answer Question 6 brings up a subtle point which contrasts graph and hypergraph network
design. It is clear that DS-Graph-CA-using-E is in NP since a YES instance admits a weighted graph
(H,wH) as a feasible solution which serves as a polynomial-time verifiable certificate for the YES instance;
in contrast, it is not immediately clear whether DS-Hypergraph-CA-using-H is in NP. This is because,
the number of hyperedges in the desired hypergraph (H,wH) could be exponential in the number of vertices,
and consequently, exponential in the size of the input. In fact, Szigeti’s result also implies that if the input
instance is feasible, then it admits a solution hypergraph (H,wH) such that the number of hyperedges in H
is at most max{2|V |,max{r(u, v) : {u, v} ∈

(
V
2

)
}}. Thus, to answer the algorithmic Question 6, we would

also need to answer the following weaker structural question as a necessary step.

Question 7. For a YES instance of DS-Hypergraph-CA-using-H, does there exist a solution hypergraph
with (strongly) polynomial number of distinct hyperedges?

In Section 3, we answer both Question 7 and Question 6 in the affirmative (see Theorem 3.1). We also
mention how these results can be extended to obtain solution hypergraphs with additional properties. A
hypergraph is uniform if all hyperedges have the same size; a hypergraph is near-uniform if every pair
of hyperedges differ in size by at most one. Uniformity/near-uniformity is a natural constraint in network
design applications involving hypergraphs—we might be able to create only equal-sized hyperedges in certain
applications. Requiring uniform (or near-uniform) hyperedges can also be viewed as a fairness inducing
constraint in certain applications. We consider the natural variant of DS-Hypergraph-CA-using-H under
near-uniformity constraints and show that we can compute a solution hypergraph in strongly polynomial time
that has linear number of hyperedges and is near-uniform (see Theorem 3.2) or one that has quadratic number
of hyperedges, is near-uniform, and simultaneously augments the connectivity of two input hypergraphs (see
Theorem 3.3). Our results are extensions of results by Bernáth and Király [17] who showed the existence of
near-uniform solution hypergraphs with pseudo-polynomial number of distinct hyperedges.

Extensions to skew-supermodular functions. Similar to the previous section, we show that our results
mentioned above can be extended to skew-supermodular functions. In particular, in Section 3.2, we consider
the algorithmic problem of computing weak covers of skew-supermodular functions. The results (Theorem 3.5
and Theorem 3.6) mentioned above are corollaries to the result presented in this section (and the results
of Section 2). In Section 3.3, we mention some applications of our general result to degree-specified node-
to-area hypergraph connectivity augmentation (see Theorem 3.7) and degree-constrained mixed hypergraph
connectivity augmentation (See Theorem 3.8) using hyperedges.

Remark 1.2. All the results that we present in Section 3 can be extended to appropriate optimization variants
which are similar to the variant mentioned in Remark 1.1 for graphs. We avoid stating those variants and
corresponding results for the sake of brevity.
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1.3 Density Deletion Set
The densest subgraph problem in graphs (DSG) is a core primitive in graph and network mining applications
[55] . In DSG, we are given a graph G = (V,E) and the goal is to find λ∗

G := maxS⊆V |E(S)|/|S|, where E(S)
is the set of edges with both end vertices in S. DSG can be computed in polynomial time [32,58,98], and thus
it is of central importance in various applications [77]. In fact, DSG is a fundamental problem in algorithms
and combinatorial optimization with several connections graph theory, matroids, and submodularity. There
are many recent papers exploring various aspects of DSG and related problems [35, 62, 73, 100, 105, 110].
Due to the widespread significance of DSG, a natural line of research is to study robustness of DSG under
perturbations to the graph. For example, the classic work of Cunningham on the attack problem [42] can
be seen as addressing the robustness of DSG by examining how it behaves under edge deletions. In certain
parameter regimes, this edge-deletion problem can be solved in polynomial time using matroid and network
flow techniques. Here, we will be interested in the natural vertex-deletion variant. We formally define this
problem next.

Definition 1.3 (GraphDD). The problem is defined as follows:

Input: Graph G = (V,E),
Vertex deletion costs c : V → R+, and
Positive integer ρ ∈ Z+.

Goal: Compute argmin{c(F ) : F ⊆ V and density(G− F ) ≤ ρ}.

When the target density ρ is fixed (i.e. a constant), we denote the problem as ρ-GraphDD . We observe
that 0-GraphDD is equivalent to the vertex cover problem since requiring density of 0 after deleting S
is equivalent to S being a vertex cover of G. One can also see, in a similar fashion, that 1-GraphDD is
equivalent to the pseudoforest deletion set problem, denoted PFDS (where the goal is to delete vertices so
that every component in the remaining graph has at most one cycle), and (1−1/|V |)-GraphDD is equivalent
to the feedback vertex set problem, denoted by FVS (where the goal is to delete vertices so that the remaining
graph is acyclic). While ρ-GraphDD is natural in its formulation, to the best of our knowledge, GraphDD
has only recently been explicitly defined and explored by Bazgan, Nichterlein and Vazquez Alferez [9] from
an FPT perspective. A natural question is to understand the approximability of the problem. Towards
this, Fujito [52] studied the problem of MatroidFVS which problem captures ρ-GraphDD for ρ ∈ Z+

as a special case. Fujito showed that this problem admits a O(log n) approximation. Since the only known
approximation lower bound for GraphDD is (2−ϵ)-inapproximability under the Unique Games Conjecture,
(arising from that of VertexCover), resolving the gap in the approximation status of the problem is a
natural question.

Question 8. What is the approximability of the ρ-GraphDD problem?

In Section 4.1 we answer Question 8 by showing that ρ-GraphDD is o(log n)-inapproximable unless
P=NP (see Theorem 4.1). We note that this is particularly surprising since the special cases of ρ ≤ 1 admit
2-approximation algorithms—we will come back to these special cases below. Thus, the problem admits a
phase transition in its approximability at ρ = 1. In order to overcome the inapproximability of the problem
we ask the next algorithmic question which allows relaxing the target density requirement.

Question 9. Does there exist a bicriteria-approximation algorithm for GraphDD?

In Section 4.1, we answer Question 9 in the affirmative (see Theorem 4.2). Our bicriteria algorithm is
based on a new LP formulation for the ρ-GraphDD problem. This formulation arose due to insights we
obtained from re-examining the special case of PFDS from the viewpoint of obtaining alternative LP formu-
lations; and this was inspired from re-examining FVS from a similar viewpoint. The next two subsections
are devoted to describing our new results and insights for these two special cases—in Section 1.3.1 we focus
on FVS and in Section 1.3.2 we focus on PFDS. Before delving into these special cases, we conclude this
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section by briefly mentioning ongoing work which extends the results to the abstract setting of supermodular
functions.

Extensions to normalized, monotone supermodular functions. The density of a supermodular func-
tion f : 2V → R is defined as density(f) := maxS⊆V

f(S)
|S| . Given a graph G = (V,E), we note that

considering the supermodular function f(S) := |E[S]| for all S ⊆ V recovers the notion of graph density
considered earlier in the section. In Section 4.2 we describe the natural generalization of the GraphDD
problem for (normalized, monotone) supermodular functions, namely SupmodDD. Since GraphDD is a
special case, our inapproximability result also carries over to the general setting. A natural question here
is to obtain a bicriteria algorithm for SupmodDD analogous to our answer to Question 9. In Section 4.2,
we present the result (see Theorem 4.4) of an ongoing work that answers this question in the affirmative by
giving a randomized combinatorial algorithm. Interestingly, the approximation guarantees that we are able
to obtain depend on a parameter cf of the input supermodular function f which was recently introduced by
Chekuri, Quanrud and Torres [35] to unify the analysis of the greedy peeling algorithm for variants of the
densest subgraph and extensions to supermodular density.

1.3.1 Feedback Vertex Set

FVS is a fundamental vertex deletion problem in the field of combinatorial optimization and appears in
Karp’s list of 21 NP-Complete problems. For a graph G = (V,E), a subset U ⊆ V is a feedback vertex set if
G− U is acyclic; in other words U is a hitting set for the cycles of G. We formally define the optimization
problem below.

Definition 1.4 (FVS). The problem is defined as follows:

Input: Graph G = (V,E), and
Vertex deletion costs c : V → R+

Goal: Compute argmin
{∑

u∈U c(u) : U ⊆ V and U is a feedback vertex set for G
}
.

Approximation algorithms for the unweighted version of FVS (UFVS), i.e., when all vertex costs are one,
have been studied since 1980s. An O(log n)-approximation for UFVS is implicit in the work of Erdös and
Pósa [43]; Monien and Schulz [89] seem to be the first ones to explicitly study the problem, and obtained
an O(

√
log n)-approximation for UFVS. Bar-Yehuda, Geiger, Naor, and Roth [8] improved the ratio for

UFVS to 4, and also noted that an O(log n)-approximation holds for FVS. Soon after that, Bafna, Berman,
and Fujito [3], and independently Becker and Geiger [10], obtained 2-approximation algorithms for FVS.
While [3] explicitly uses the local-ratio terminology, [10] describes the algorithm in a purely combinatorial
fashion. Although the algorithm in [3] is described via the local-ratio method, the underlying LP relaxation
is not obvious. As observed in [8], the natural hitting set LP relaxation for FVS has an integrality gap
of Θ(log n). Chudak, Goemans, Hochbaum, and Williamson [39] described exponential sized integer linear
programming (ILP) formulations for FVS, and showed that the algorithms in [3,10] can be viewed as primal-
dual algorithms with respect to the LP relaxations of these formulations. This also established that these
LP relaxations have an integrality gap of at most 2. As we mentioned at the beginning of the main section,
Fujito [52] considered a unified generalization of FVS and vertex cover, namely matroidal FVS, and gave
a O(log n)-approximation for matroidal FVS via connections to submodular set cover. In the same work,
Fujito formulated an exponential sized ILP for matroidal FVS, and designed a primal-dual algorithm with
respect to its LP relaxation. He proved that the algorithm has an approximation ratio of 2 for a certain
family of matroids. When specialized to FVS, we note that the ILP and the resulting primal-dual algorithm
in [52] is slightly different from the one in [39] although they both yield 2-approximations.

Although the LPs of Fujito and Chudak et. al. have integrality gap at most 2 for FVS, it is not known
whether these can actually be solved in polynomial time. Equivalently, it is open to design polynomial-time
separation oracles for the families constraints of these LPs. Moreover, there has been no other polynomial-
time solvable LP relaxation through which one could obtain a 2-approximation for FVS. The lack of solvable
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LP relaxations for FVS with small integrality gap has also been a stumbling block for the design of approxima-
tion algorithms for a generalization of FVS called the subset feedback vertex set problem (Subset-FVS) [44]:
the input is a vertex-weighted graph G and a terminal set T ⊆ V , and the goal is to remove a minimum
cost subset of vertices S to ensure that G − S has no cycle containing a terminal t ∈ T . There is an 8-
approximation for Subset-FVS [45] and this is based on a complex algorithm that combines combinatorial
and LP-based techniques. Chekuri and Madan [34] formulated a polynomial-sized integer linear program for
Subset-FVS and showed that the integrality gap of its LP-relaxation is at most 13. They explicitly raised
the question of whether the integrality gap of their formulation is better for FVS; in fact it is open whether
their formulation’s integrality gap is at most 2 for Subset-FVS. This brings us to the following motivating
question.

Question 10. Does there exist an ILP formulation for FVS whose LP-relaxation can be solved in polynomial
time and has integrality gap at most 2?

In Section 4, we affirmatively answer Question 10 (see Theorem 4.8). We also affirmatively answer the
question posed by Chekuri and Madan by analyzing the integrality gap of their LP when specialized to FVS.

1.3.2 Pseudoforest Deletion Set

A connected graph is a pseudotree if it has exactly one cycle; in other words there is an edge whose removal
results in a spanning tree. A graph is a pseudoforest if every connected component is either acyclic or a
pseudotree. For a graph G = (V,E), a subset U ⊆ V is a pseudoforest deletion set if G−U is a pseudoforest.
We formally define the optimization problem below.

Definition 1.5 (PFDS). The problem is defined as follows:

Input: Graph G = (V,E), and
Vertex deletion costs c : V → R+

Goal: Compute argmin
{∑

u∈U c(u) : U ⊆ V and U is a pseudoforest deletion set for G
}
.

Intuitively, one can see that PFDS is closely related to FVS: we note that a feasible solution for FVS
in a given graph G is a feasible solution to the PFDS instance on G. Also, finding an FVS in a graph
that is a pseudoforest is easy: for each connected component that is a pseudotree, we remove the cheapest
vertex in its unique cycle. PFDS and FVS are special cases of the more general ℓ-pseudoforest deletion
problem that was introduced in [97] from the perspective of parameterized algorithms (FVS corresponds
to ℓ = 0 and PFDS to ℓ = 1). Lin, Feng, Fu, and Wang [83] studied approximation algorithms for ℓ-
pseudoforest deletion problem. In this paper, we restrict attention to PFDS and FVS and do not discuss
the more general ℓ-pseudoforest deletion problem. The status of PFDS is very similar to that of FVS. It
has an approximation preserving reduction from the vertex cover problem and consequently, it is NP-hard,
and does not have a polynomial time (2− ϵ)-approximation for every constant ϵ > 0 assuming the UGC. It
admits a polynomial-time 2-approximation based on the local-ratio technique [83]. While the authors in [83]
do not explicitly discuss LP relaxations for PFDS, we note that their local-ratio algorithm can be converted
to an LP-based 2-approximation for PFDS following the ideas in [39]. In fact, PFDS also falls under the
matroidal FVS framework of Fujito for sparse matroids, and so Fujito’s LP, when specialized for PFDS, also
has an integrality gap of at most 2. However, similar to the situation for FVS, we do not know how to solve
these LPs in polynomial time. This leads to the following question (which is the counterpart of Question 10
for PFDS):

Question 11. Does there exist an ILP formulation for PFDS whose LP-relaxation can be solved in polyno-
mial time and has integrality gap at most 2?

In Section 4, we present our results that answer Question 11 in the affirmative by exploiting connections
to graph density (see Theorem 4.5). As we will see, the LPs which we we will exhibit as our answer to
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Question 11 will play a crucial role in answering Question 10 for FVS. In addition to answering Question
11, we also exhibit extreme point properties of the underlying polytopes (see Theorem 4.6 and Theorem 4.7)
which may be of independent interest.

2 Splitting off in hypergraphs
In this section we present our results on splitting-off in hypergraphs which appeared in ICALP 2024 [15]. In
Section 2.1, we introduce our definition of a new splitting-off operation in hypergraphs. In Section 2.2, we
describe the existence of local-connectivity preserving splitting-off operation analogous to Mader’s Theorem
and show that it can be computed in strongly polynomial-time algorithm in weighted hypergraphs. In Sec-
tion 2.3, we illustrate the usefulness of our splitting-off operation by giving two applications. In Section 2.4,
we mention how we can view splitting-off in hypergraphs as a special case of an abstract function covering
problem on skew-supermodular functions—our results for existence and algorithms for local-connectivity
preserving splitting-off in hypergraphs extend to this general regime.

2.1 Splitting-off operation
In this section, we introduce our definition of splitting-off in hypergraphs. To compare and contrast our
definition of splitting-off for hypergraphs with the classical definition of splitting-off for graphs, we include
both our definition and the classical definition and distinguish them by identifying them as h-splitting-off
and g-splitting-off.

Definition 2.1 ( [15]). Let (G = (V,E), w : E → Z+) be a hypergraph and s ∈ V .

1. In merge almost-disjoint hyperedges, we pick a pair of hyperedges e, f ∈ δG(s) such that e ∩ f = {s},
pick a positive integer α ∈ Z+ such that α ≤ min{w(e), w(f)}, reduce the weights of hyperedges e and
f by α, and increase the weight of a hyperedge g by α. Here,

(a) if we choose g := e ∪ f , then the associated operation will be called as h-merge almost-disjoint
hyperedges operation.

(b) if we choose g := (e∪f)\{s}, then the associated operation will be called as g-merge almost-disjoint
hyperedges operation.

In the above, if α = w(e) (resp. if α = w(f)), then we discard the hyperedge e (resp. hyperedge f)
from the hypergraph obtained after the operation; if the hyperedge g ̸∈ E, then we introduce g as a new
hyperedge with weight w(g) := 0 before performing the weight increase on the hyperedge g.

2. In trim hyperedge operation, we pick a hyperedge e ∈ δG(s), pick a positive integer α ∈ Z+, reduce the
weight of the hyperedge e and increase the weight of the hyperedge g := e \ {s}. Here,

(a) if we choose α ≤ w(e), reduce the weight of the hyperedge e by α, and increase the weight of the
hyperedge g by α, then the associated operation will be called as h-trim operation (if α = w(e),
then we discard e from the hypergraph obtained after the operation; if g ̸∈ E, then we add g as a
new hyperedge with weight w(g) := 0 before performing the weight increase on the hyperedge g).

(b) if we choose α ≤ w(e)/2, reduce the weight of the hyperedge e by 2α, and increase the weight of the
hyperedge g by 2α, then the associated operation will be called as g-trim operation (if α = w(e)/2,
then we discard e from the hypergraph obtained after the operation; if g ̸∈ E, then we add g as a
new hyperedge with weight w(g) := 0 before performing the weight increase on the hyperedge g).

3. We say that a hypergraph (H = (V,EH), wH : EH → Z+) is obtained by applying a

(a) h-splitting-off operation at s from (G,w) if (H,wH) is obtained from (G,w) by either the h-merge
almost-disjoint hyperedges operation or the h-trim hyperedge operation.
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(b) g-splitting-off operation at s from (G,w) if (H,wH) is obtained from (G,w) by either the g-merge
almost-disjoint hyperedges operation or the g-trim hyperedge operation.

Certain remarks regarding the definitions are in order. Firstly, the trim operation is valuable and unique
to hypergraphs. It has been used in the hypergraph literature to obtain small-sized certificates for hypergraph
connectivity [37] and for certain notions of directed hypergraph connectivity [50]. Secondly, all operations
mentioned above are degree preserving for vertices u ∈ V \ {s}: both h-trim and g-trim operations preserve
degrees by definition; both h-merge and g-merge almost-disjoint hyperedges operations preserve degrees due
to the almost-disjoint property of the chosen hyperedges. Thirdly, all operations mentioned above do not
increase the cut values of subsets X ⊆ V \{s}. Thus, the relevant goal with these operations is ensuring that
the cut values do not decrease too much—i.e., preserving global/local connectivity. We will be interested in
repeated application of h-splitting-off operations at a vertex from a given hypergraph to isolate that vertex
while preserving global/local connectivity. We define these formally next.

Definition 2.2 ( [15]). Let (G = (V,E), w : E → Z+) be a hypergraph and s ∈ V .

1. We say that a hypergraph (G∗ = (V,E∗), w∗ : E∗ → Z+) is a

(a) complete h-splitting-off at s from (G,w) if d(G∗,w∗)(s) = 0 and (G∗, w∗) is obtained from (G,w)
by repeatedly applying h-splitting-off operations at s from the current hypergraph.

(b) complete g-splitting-off at s from (G,w) if d(G∗,w∗)(s) = 0 and (G∗, w∗) is obtained from (G,w)
by repeatedly applying g-splitting-off operations at s from the current hypergraph.

2. Let (G∗, w∗) be a complete h-splitting-off/g-splitting-off at s from (G,w). We say that (G∗, w∗)

(a) preserves local connectivity if λ(G∗,w∗)(u, v) = λ(G,w)(u, v) for every distinct u, v ∈ V \ {s} and

(b) preserves global connectivity if
min{λ(G∗,w∗)(u, v) : u, v ∈ V \ {s}, u ̸= v} = min{λ(G,w)(u, v) : u, v ∈ V \ {s}, u ̸= v}.

A notion of hypergraph splitting-off motivated by hypergraph connectivity augmentation applications
has been studied in the literature before [6,18,40]. These works have explored local connectivity preserving
complete g-splitting-off at a vertex s from a hypergraph under the assumption that all hyperedges incident
to the vertex s are edges (i.e., have size at most 2). In contrast, our focus is on local connectivity preserving
complete h-splitting-off at a vertex s from a hypergraph without any assumption on the size of the hyperedges
incident to the vertex s (i.e., the vertex s could have arbitrary-sized hyperedges incident to it). See [15] for
an example of complete h-splitting-off at a vertex from a hypergraph.

We will primarily be concerned with complete h-splitting-off at a vertex from a hypergraph and complete
g-splitting-off at a vertex from a graph. Complete g-splitting-off at a vertex from a graph is equivalent to
the classical and well-studied notion of complete splitting-off at a vertex from a graph (for the definition
of the classical notion in graphs, see [50, 90]). We cast the results of Lovász [84, 86] and Mader [87] in the
framework of our definitions now. Let (G,w) be a graph and let s be a vertex in G. Lovász [84, 86] showed
that if d(G,w)({s}) is even and min{λ(G,w)(u, v) : u, v ∈ V \ {s}} ≥ K for some K ≥ 2, then there exists a
global connectivity preserving complete g-splitting-off at the vertex s from (G,w). Mader [87] showed that
if d(G,w)({s}) is even, there is no cut-edge1 incident to s, and (G,w) is connected, then there exists a local
connectivity preserving complete g-splitting-off at the vertex s from (G,w).

We compare and contrast complete h-splitting-off at a vertex from a hypergraph and complete g-splitting-
off at a vertex from a graph. Complete h-splitting-off at a vertex s from a hypergraph enables the vertex s to
exit the hypergraph by informing its incident hyperedges about how to merge and trim themselves in order
to preserve degrees. In this sense, the definition of complete h-splitting-off at a vertex from a hypergraph
serves the same role as complete g-splitting-off at a vertex from a graph. On the other hand, there are
important differences between the two notions. Firstly, complete h-splitting-off at a vertex from a graph
may not necessarily be a graph (owing to the creation of hyperedges of size at least 3) while it is an easy

1Equivalently, for every edge e ∈ δG(s) with w(e) = 1, the removal of that edge does not disconnect the graph.
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exercise to show that complete g-splitting-off at a vertex from a graph will necessarily be a graph. Secondly,
local/global connectivity preserving complete g-splitting-off at a vertex from a graph may not exist—consider
splitting-off the center vertex of a star graph.

2.2 Existence and algorithms
In this section, we state our result showing that a local connectivity preserving complete h-splitting-off at a
vertex from a hypergraph always exists and can be computed in strongly polynomial time.

Theorem 2.1 ( [15]). Given a hypergraph (G = (V,E), wG : E → Z+) and a vertex s ∈ V , there exists a
strongly polynomial-time algorithm to find a local connectivity preserving complete h-splitting-off at s from
(G,wG).

A distinction between Theorem 2.1 and the graph splitting-off results of Lovász and Mader is that
Theorem 2.1 shows the existence of a local connectivity preserving complete h-splitting-off at a vertex
from a hypergraph without any assumptions on the hypergraph whereas Lovász’s and Mader’s results hold
only under certain technical assumptions on the graph. In several applications of their results, additional
arguments are needed to address cases where those technical assumptions do not hold. For this reason, we
believe that Theorem 2.1 could be useful in simplifying the arguments involved in some of the applications
of Lovász’s and Mader’s graph splitting-off results.

2.3 Applications
In this section, we present two applications of Theorem 2.1.

2.3.1 Steiner rooted connected orientations

Orienting hypergraphs is a fundamental area in graph theory and combinatorial optimization (see Frank’s
book [50]) with far reaching implications. For example, Woodall’s conjecture can be reformulated as a
hypergraph orientation problem [1]; moreover, hypergraph orientation results have recently been used in
coding theory [2]. Király and Lau [74] showed that an approximate min-max relation holds for rooted
Steiner-connected orientations in hypergraphs. To state their result, we need some terminology in hypergraph
orientations.

Let G = (V,E) be a hypergraph. An orientation
−→
G = (V,E, head : E → V ) of G is a directed hypergraph

obtained by assigning a unique head vertex head(e) ∈ e for each e ∈ E. A pair (e, head(e)) is denoted as a
hyperarc with the head of the hyperarc being head(e) and the tails of the hyperarc being e \ head(e). Let
G = (V,E) be a hypergraph, T ⊆ V be a set of terminals, r ∈ T be a root vertex, and k be a positive integer.
An orientation

−→
G of G is defined to be Steiner rooted k-hyperarc-connected if there exist k hyperarc-disjoint

paths in
−→
G from t to r for every terminal t ∈ T \ {r}. Here, a path from t to r in a directed hypergraph is

an alternating sequence of distinct vertices and hyperarcs t = v1, a1, v2, a2, ..., aℓ−1, vℓ = r such that vi is a
tail of ai and vi+1 is the head of ai for every i ∈ [ℓ− 1]. We say that a hypergraph G is Steiner k-hyperedge-
connected if λG(u, v) ≥ k for every pair of distinct terminals u, v ∈ T . It is clear that if the hypergraph
G has a Steiner rooted k-hyperarc-connected orientation, then G should be Steiner k-hyperedge-connected.
However, the converse is not necessarily true. Király and Lau [74] showed that if the hypergraph is Steiner
2k-hyperedge-connected, then it has a Steiner rooted k-hyperarc-connected orientation.

Theorem 2.2 (Király and Lau [74]). Let G = (V,E) be a hypergraph, T ⊆ V be a subset of terminals, r ∈ T
be the root vertex, and k be a positive integer. If G is Steiner 2k-hyperedge-connected, then it has a Steiner
rooted k-hyperarc-connected orientation.

Király and Lau’s proof of Theorem 2.2 was based on careful uncrossing and contractions. In [15], we give
an alternative proof of Theorem 2.2 using Theorem 2.1. Our proof of Theorem 2.2 reveals the source of the 2-
factor gap in the approximate min-max relation of Király and Lau for Max Steiner Rooted-Connected
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Orientation Problem: it arises from the 2-factor gap between connectivity and weak-partition-connectivity
of hypergraphs (see [15] for formal details). We note that an important special case of Theorem 2.2 is when
the input hypergraph is a graph. In this case, the proof of the statement follows as a direct consequence of
the Nash-Williams Strong orientation Theorem [94] which states that every undirected graph G = (V,E)

admits an orientation
−→
G such that λ−→

G
(u, v) ≥ ⌊λG(u, v)/2⌋ for every distinct u, v ∈ V , where λ−→

G
(u, v) is

the maximum number of arc-disjoint directed paths from u to v in
−→
G . Our proof strategy is thus unique

since it proves an orientation result for graphs using tools developed for hypergraphs.

Remark 2.1. Nash-Williams’ proof of the strong orientation theorem [94] is a sophisticated inductive argu-
ment. Giving a simple and more insightful proof of the strong orientation theorem has been a central topic
of interest in graph theory and combinatorial optimization (see [48]). Mader [87] gave a different proof of
the strong orientation theorem using his local connectivity preserving splitting-off theorem, but his proof also
involved sophisticated technical arguments. Frank [48] condensed the ideas of both Nash-Williams and Mader
to present a proof of the strong orientation theorem using Mader’s local connectivity preserving splitting-off,
but it is still technically complicated. The technical complication in using Mader’s local connectivity pre-
serving splitting-off result arises from the assumptions that need to be satisfied by the vertex to be split-off.
In contrast, our splitting-off result for hypergraphs (namely, Theorem 2.1) does not need any assumptions
on the vertex to be split-off. In light of these considerations, our proof of Theorem 2.2 using Theorem 2.1
provides hope that Theorem 2.1 (or the ideas therein) could be used to give a conceptually simpler proof of
Nash-Williams’ strong orientation theorem.

Our proof technique for Theorem 2.2 using Theorem 2.1 also leads to a simple alternate proof of Menger’s
theorem in undirected graphs and hypergraphs (edge-disjoint version). Moreover, Theorem 2.2 can be ex-
tended to weighted graphs/hypergraphs (by considering parallel copies of edges/hyperedges). This version
of Theorem 2.2 can also be shown to admit strongly polynomial-time algorithms using our proof strategy
as well as the proof strategy of Király and Lau. We avoid stating the weighted version in the interests of
brevity.

2.3.2 Constructive characterizations

For the purposes of this application, we will use graphs and hypergraphs to refer to multi-graphs and
multi-hypergraphs respectively. Let k be a positive integer. A graph G = (V,E) is k-edge-connected if
dG(X) ≥ k for every non-empty proper subset X ⊊ V . Constructive characterization of k-edge-connected
graphs is a central problem in graph theory. It is well-known that a graph is 1-edge-connected if and only if it
admits a spanning tree. Robbins’ [101] showed that a graph is 2-edge-connected if and only if it admits an ear
decomposition (see [50] for definition of ear decomposition). Generalizing Robbins’ result, Lovász [84,86] gave
a constructive characterization of k-edge-connected graphs for even k using his result on global connectivity
preserving complete g-splitting-off at a vertex from a graph. Mader [87] gave a constructive characterization
of k-edge-connected graphs for odd k using his result on local connectivity preserving complete g-splitting-
off at a vertex from a graph. Motivated by these results, we present a constructive characterization of
k-hyperedge-connected hypergraphs using our splitting-off result in Theorem 2.1. A hypergraph G = (V,E)
is defined to be k-hyperedge-connected if dG(X) ≥ k for every non-empty proper subset X ⊊ V .

Both Lovász’s and Mader’s constructive characterizations of k-edge-connected graphs are based on a
pinching operation in graphs. Our constructive characterization of k-hyperedge-connected hypergraphs is
also based on a pinching operation, but our pinching operation is defined for hypergraphs. We define this
operation now (see Figure 1 for an example).

Definition 2.3 ( [15]). Let G = (V,E) be a hypergraph and p, k ∈ Z+ be positive integers such that p ≤ k.
In (k, p)-pinching hyperedges of G, we obtain a new hypergraph by performing the following sequence of
operations:

1. pick p distinct hyperedges e1, . . . , ep ∈ E,

2. pick p positive integers t1, . . . , tp ∈ Z+ such that
∑p

i=1 ti = k,
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3. for each i ∈ [p], choose a partition of the hyperedge ei into ti non-empty parts ei = ⊎j∈[ti]f
j
i ,

4. remove the hyperedges e1, . . . , ep from the hypergraph G,

5. add a new vertex s and hyperedges {f j
i ∪ {s} : j ∈ [ti], i ∈ [p]} to the hypergraph G.

Figure 1: An example of a (4, 2)-pinching operation. Here, t1 = t2 = 2.

With this definition of pinching, we show the following constructive characterization of k-hyperedge-
connected hypergraphs.

Theorem 2.3 ( [15]). Let k ∈ Z+ be a positive integer. A hypergraph G = (V,E) is k-hyperedge-connected if
and only if G can be obtained by starting from the single vertex hypergraph with no hyperedges and repeatedly
applying one of the following two operations:

1. add a new hyperedge over a subset of vertices of the existing hypergraph, and

2. (k, p)-pinching hyperedges of the existing hypergraph for some positive integer p ≤ k.

Our proof of Theorem 2.3 is constructive: i.e., given a k-hyperedge-connected hypergraph G, our proof
gives a polynomial-time algorithm to construct a sequence of hypergraphs G0, G1, G2, . . . , Gt, where G0 is
the single vertex hypergraph with no hyperedges, Gt = G and for each i ∈ [t], the hypergraph Gi is obtained
from Gi−1 by either adding a new hyperedge over a subset of vertices in Gi−1 or by (k, p)-pinching hyperedges
in Gi−1 for some positive integer p ≤ k.

2.4 Weak to Strong Cover of Symmetric Skew-Supermodular Functions
In this section, we present a more general statement that implies Theorem 2.1. We begin with the definitions
needed for the more general statement.

Definition 2.4. Let V be a finite set, p : 2V → Z be a set function, and (H = (V,E), w : E → Z+) be a
hypergraph.

1. The set function p

(a) is symmetric if p(X) = p(V −X) for every X ⊆ V , and

(b) is skew-supermodular if for every X,Y ⊆ V , at least one of the following inequalities hold:

i. p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ).
ii. p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X).

2. The coverage function b(H,w) : 2
V → Z≥0 is defined by b(H,w)(X) :=

∑
e∈BH(X) w(e) for every X ⊆ V ,

where BH(X) := {e ∈ E : e ∩X ̸= ∅} for every X ⊆ V .

3. The hypergraph (H,w) weakly covers the function p if b(H,w)(X) ≥ p(X) for every X ⊆ V .
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4. The hypergraph (H,w) strongly covers the function p if d(H,w)(X) ≥ p(X) for every X ⊆ V .

Bernáth and Király [17] showed that a weak cover of a symmetric skew-supermodular function can be
converted to a strong cover of the same function by repeated merging of disjoint hyperedges. We recall their
definition of the merging operation, discuss their result, and its significance now.

Definition 2.5. Let (H = (V,E), w : E → Z+) be a hypergraph. We use Hw to denote the unweighted
multi-hypergraph over vertex set V containing w(e) copies of every hyperedge e ∈ E. By merging two
disjoint hyperedges of Hw, we refer to the operation of replacing them by their union in Hw. We will say
that a hypergraph (G = (V,EG), c : EG → Z+) is obtained from (H,w) by merging hyperedges if the multi-
hypergraph Gc is obtained from the multi-hypergraph Hw by repeatedly merging two disjoint hyperedges in the
current hypergraph.

Theorem 2.4 (Bernáth and Király [17]). Let (H = (V,E), w : E → Z+) be a hypergraph and p : 2V → Z be
a symmetric skew-supermodular function such that b(H,w)(X) ≥ p(X) for every X ⊆ V . Then, there exists
a hypergraph

(
H∗ = (V,E∗), w∗ : E∗ → Z+

)
such that

(1) d(H∗,w∗)(X) ≥ p(X) for every X ⊆ V and

(2) the hypergraph (H∗, w∗) is obtained by merging hyperedges of the hypergraph (H,w).

We observe that Theorem 2.4 can be used to prove the existential version of Theorem 2.1: namely, for
every hypergraph (G = (V,E), wG : E → Z+) and a vertex s ∈ V , there exists a local connectivity preserving
complete h-splitting-off at s from (G,wG). This can be shown by setting up the hypergraph (H,w) and the
function p suitably based on (G,wG) and using Theorem 2.4. We emphasize that this conclusion regarding
hypergraph splitting-off from Bernáth and Király’s result was not known before in the literature and is one
of our contributions.

Remark 2.2. We were also able to prove the existential version of Theorem 2.1 using element-connectivity
preserving reduction operations [14] (see [33] for the definition of element-connectivity and the notion of
element-connectivity preserving reduction operations). The alternate proof does not seem to be helpful for the
purposes of a strongly polynomial time algorithm. In fact, it remains open to design a strongly polynomial-
time algorithm to perform complete element-connectivity preserving reduction operations in the weighted
setting [33].

We recall that existence of a local connectivity preserving complete h-splitting-off at a vertex from a
hypergraph does not immediately imply a polynomial-time algorithm However, the above-mentioned proof
of existence of a local-connectivity preserving complete splitting-off at an arbitrary vertex from a hypergraph
(i.e., existential version of Theorem 2.1) via Theorem 2.4 suggests a natural approach towards designing a
strongly polynomial time algorithm to find a local-connectivity preserving complete splitting-off at a given
vertex from a given hypergraph: it suffices to prove a constructive version of Theorem 2.4 via a strongly
polynomial-time algorithm. In particular, we need to show Theorem 2.4 with the extra conclusion that the
number of additional hyperedges in H∗ is polynomial in the number of hyperedges and vertices in H.

Bernáth and Király proved Theorem 2.4 in the context of a reduction between certain hypergraph con-
nectivity augmentation problems. For that reduction, the existential version of Theorem 2.4 is sufficient.
However, for the purposes of our application to hypergraph splitting-off, we need an algorithmic version of
Theorem 2.4. Bernáth and Király’s proof of Theorem 2.4 is in fact algorithmic, but the run-time of the asso-
ciated algorithm is not necessarily polynomial. Their proof implies that the number of additional hyperedges
in the hypergraph (H∗, c∗) returned by their algorithm is at most

∑
e∈E w(e) (i.e., |E∗| − |E| ≤

∑
e∈E w(e))

and the run-time of the algorithm is O(
∑

e∈E(|e|+w(e)). In particular, their run-time is polynomial only if
the input weights are given in unary. In fact, in [15], we given example of an exponential-sized which could
arise as in the execution of their algorithm.

We address both the structural and the algorithmic issues mentioned above by proving a stronger algo-
rithmic version of Theorem 2.4. In order to phrase an algorithmic version of Theorem 2.4, we need suitable
access to the function p. Bernáth and Király [17] suggested access to a certain function maximization oracle
associated with the function p that we describe below.
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Definition 2.6. Let p : 2V → Z be a set function. p-max-sc-Oracle
(
(G0, c0) , S0, T0

)
takes as input a

hypergraph (G0 = (V,E0), c0 : E0 → Z+) and disjoint sets S0, T0 ⊆ V , and returns a tuple (Z, p(Z)), where
Z is an optimum solution to the following problem:

max
{
p(Z)− d(G0,c0)(Z) : S0 ⊆ Z ⊆ V − T0

}
. (p-max-sc-Oracle)

For the purposes of our application (namely local connectivity preserving complete h-splitting-off at a
vertex from a hypergraph), the above-mentioned function maximization oracle can be implemented to run
in strongly polynomial time. Using the above mentioned oracle, we prove the following algorithmic version
of Theorem 2.4.

Theorem 2.5 ( [15]). Let (H = (V,E), w : E → Z+) be a hypergraph and p : 2V → Z be a symmetric
skew-supermodular function such that b(H,w)(X) ≥ p(X) for every X ⊆ V . Then, there exists a hypergraph(
H∗ = (V,E∗), w∗ : E∗ → Z+

)
such that

(1) d(H∗,w∗)(X) ≥ p(X) for every X ⊆ V ,

(2) the hypergraph (H∗, w∗) is obtained by merging hyperedges of the hypergraph (H,w), and

(3) |E∗| − |E| = O(|V |).

Furthermore, given a hypergraph (H = (V,E), w : E → Z+) and access to p-max-sc-Oracle of a symmetric
skew-supermodular function p : 2V → Z where b(H,w)(X) ≥ p(X) for every X ⊆ V , there exists an algorithm
that runs in O(|V |3(|V | + |E|)2) time using O(|V |3(|V | + |E|)) queries to p-max-sc-Oracle and returns a
hypergraph

(
H∗ = (V,E∗), w∗ : E∗ → Z+

)
satisfying the above three properties. The run-time includes the

time to construct the hypergraphs used as input to the queries to p-max-sc-Oracle. Moreover, for each query
to p-max-sc-Oracle, the hypergraph (G0, c0) used as input to the query has O(|V |) vertices and O(|V |+ |E|)
hyperedges.

Theorem 2.5 is a strengthening of Theorem 2.4 in two ways. Firstly, our theorem shows the existence
of a hypergraph that not only satisfies properties (1) and (2), but also satisfies property (3) – i.e., the
number of additional hyperedges in the returned hypergraph is linear in the size of the vertex set. Secondly,
our Theorem 2.5 shows the existence of a strongly polynomial-time algorithm that returns a hypergraph
satisfying the three properties. Our main contribution is modifying Bernáth and Király’s algorithm and
analyzing the modified algorithm to bound the number of additional hyperedges and the run-time. We
mention that property (3) cannot be tightened to guarantee that |E∗ − E| = O(|V |). In [15] we show an
example where |E∗ − E| = Ω(|V |2).

Theorem 2.5 immediately leads to a proof of Theorem 2.1. Instead of using Theorem 2.5 as a black-box,
if we delve into the proof of it in the context of the proof of Theorem 2.1, we obtain the following theorem:

Theorem 2.6 ( [15]). Let (G = (V,E), w : E → Z+) be a hypergraph and s ∈ V . Then, there exists a
hypergraph (G′ = (V,E′), w′ : E′ → Z+) obtained by applying a h-splitting-off operation at s from (G,w)
such that λ(G′,w′)(u, v) = λ(G,w)(u, v) for every distinct u, v ∈ V \ {s}.

Theorem 2.6 closely resembles the existential edge splitting-off results of Lovász [84, 86] and Mader [87]
for graphs. Lovász’s and Mader’s existential edge splitting-off results for graphs are important since they
have been used to simplify the proofs of fundamental results in graph theory—e.g., Nash-Williams’ Strong
Orientation Theorem. On the other hand, Theorem 2.6 does not immediately imply a strongly polynomial-
time algorithm for finding a local connectivity preserving complete h-splitting off at a vertex from a given
weighted hypergraph. So, Theorem 2.1 may be useful in algorithmic contexts while Theorem 2.6 may be
useful in graph-theoretical contexts.
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2.5 Open Problems
In this section, we list some open problems that arise as a result of our work.

1. Is there a fast algorithm to compute a local connectivity preserving complete h-splitting off? The crude
runtime of our algorithm for Theorem 2.1 is O(|V |6(|V |+ |E|)3. It is likely that recent developments in
fast Gomory-Hu tree construction [64,81] can help improve the runtime by leveraging Gomory-Hu trees
in a manner similar to that used by Lau and Yung [79] for fast local connectivity-preserving g-splitting
off in graphs. We note that improving the runtime of local-connectivity preserving g-splitting off in
graphs is a long-standing open problem.

2. Theorem 2.1 focused on local connectivity-preserving complete h-splitting-off at a vertex from a hyper-
graph. We mentioned the star graph as an example showing that local/global connectivity-preserving
complete g-splitting-off at a vertex from a hypergraph may not exist. Are there sufficient conditions to
guarantee the existence of such an operation? We recall that Lovász’s [84,86] and Mader’s [87] results
give sufficient conditions to guarantee local and global connectivity-preserving complete g-splitting-off
at a vertex from a graph.

3. In graphs and hypergraphs, it is known that there exists a global-connectivity preserving g-splitting-off
of edges that respects partition constraints, i.e. the edges added during the split-off operations cannot
have both endpoints belonging to the same part of a specified partition [5]. This has also been extended
to the setting of covering symmetric crossing supermodular functions (using graph edges) [16]. Are
there extensions of these results for hypergraphs? In particular, does there exist a global-connectivity
preserving complete h-splitting off that respects partition constraints? A notion of respecting partition
constraints here is that all hyperedges that are merged together via h-merge operations must belong
to separate parts.

4. Is there an appropriate definition of complete splitting-off that would preserve the rank and the local-
connectivities of the hypergraph?

5. Is there an appropriate definition of complete splitting-off in directed hypergraphs that would preserve
the local-connectivities of the hypergraph?

6. Goemans [56] showed that there exists a complete splitting-off that preserves all 4/3-approximate
min-cuts of a graph. Does there exist a complete h-splitting-off that similarly preserves approximate
min-cuts in hypergraphs?

7. Benczur and Goemans [13] showed that there exists a polygonal representation of (approximate) mini-
mum cuts of a graph. How does the structure of the polygonal representation change during splitting-off
operations? Can the polygon be maintained efficiently? Moreover, can this be used to speed up the
computation of local-connectivity preserving complete splitting-off?

8. Recently, splitting-off in graphs has been used to design tools that have been used in designing a
polynomial time randomized approximation scheme for congruency-constrained minimum cut [95].
Can local-connectivity preserving h-splitting-off be used to develop analogous tools for approximating
the congruency-constrained minimum cut in hypergraphs?

9. We reiterate the question posed in Remark 2.2. The notion of element-connectivity in graphs closely
related to hypergraph connectivity. There exists a notion of element connectivity preserving reduction
operations which is analogous to connectivity-preserving splitting off in graphs and hypergraphs [33,66].
Is it possible to perform complete element-connectivity preserving reduction operations in the weighted
setting in strongly polynomial time?
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3 Hypergraph connectivity augmentation
In this section, we present our results on hypergraph connectivity augmentation which appeared at ESA
2024 [22].

3.1 Degree-Specified Hypergraph Connectivity Augmentation
We recall the variant of DS-Graph-CA-using-E for hypergraphs which will be the focus of this section.

Definition 3.1 (DS-Hypergraph-CA-using-H). Degree-specified Hypergraph Connectivity Augmenta-
tion using Hyperedges problem is defined as follows:

Input: A hypergraph (G = (V,EG, cG : EG → Z+),
target connectivity function r :

(
V
2

)
→ Z≥0, and

degree requirement function m : V → Z≥0.
Goal: Verify if there exists a hypergraph (H = (V,EH), wH : EH → Z+) such that

b(H,wH)(u) = m(u) for every u ∈ V , λ(G+H,cG+wH)(u, v) ≥ r(u, v) for every distinct u, v ∈ V ,
and if so, then find such a hypergraph.

Our main result below strengthens both the structural and algorithmic results of Szigeti [106] and shows
that feasible instances admit solutions with O(|V |) hyperedges and can be computed in strongly polynomial
time algorithm.

Theorem 3.1 ( [22]). There exists an algorithm to solve DS-Hypergraph-CA-using-H that runs in time
O(n7(n+m)2), where n is the number of vertices and m is the number of hypergedges in the input hypergraph.
Moreover, if the instance is feasible, then the algorithm returns a solution hypergraph that contains at most
4n hyperedges.

Next, we consider a variant of DS-Hypergraph-CA-using-H which requires solution hypergraphs to
be near-uniform—we recall that a hypergraph is uniform if all hyperedges have the same size; a hypergraph
is near-uniform if every pair of hyperedges differ in size by at most one. Our next result shows that
feasible instances of DS-Hypergraph-CA-using-H admit solution hypergraphs with O(|V |) near-uniform
hyperedges; moreover, these solution hypergraphs can be computed in strongly polynomial time.

Theorem 3.2 ( [22]). There exists a strongly polynomial time algorithm to solve DS-Hypergraph-CA-
using-H. Moreover, if the instance is feasible, then the algorithm returns a solution hypergraph that is
near-uniform and contains O(n) hyperedges, where n is the number of vertices in the input hypergraph.

Next, we consider a variant of hypergraph connectivity augmentation where the goal is to simultaneously
augment two input hypergraphs to achieve certain target connectivities using the same degree-specified
hypergraph.

Definition 3.2 (DS-Simul-Hypergraph-CA-using-H). The Degree-specified Simultaneous Hypergraph
Connectivity Augmentation Hyperedges is defined as follows:

Given: Hypergraphs (Gi = (V,Ei), ci : Ei → Z+) for i ∈ {1, 2},
target connectivity functions ri :

(
V
2

)
→ Z≥0 for i ∈ {1, 2} such that

max{r1(u, v)− λ(G1,c1)(u, v) : u, v ∈ V } = max{r2(u, v)− λ(G2,c2)(u, v) : u, v ∈ V }, and
degree requirement function m : V → Z≥0.

Goal: Verify if there exists a hypergraph (H = (V,EH), wH : EH → Z+) such that
b(H,wH )(u) = m(u) for every u ∈ V and
λ(Gi+H,ci+wH )(u, v) ≥ ri(u, v) for every distinct u, v ∈ V and i ∈ {1, 2},
and if so, then find such a hypergraph.
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Bernáth and Király [17] proposed the above problem and showed that if the assumption max{r1(u, v)−
λ(G1,c1)(u, v) : u, v ∈ V } = max{r2(u, v) − λ(G2,c2)(u, v) : u, v ∈ V } does not hold, then the problem is
NP-complete. So, we include this assumption in the definition of the problem statement. Our result below
extends both the structural and algorithmic results of Bernáth and Király for DS-Simul-Hypergraph-
CA-using-H.

Theorem 3.3 ( [22]). There exists a strongly polynomial time algorithm to solve DS-Simul-Hypergraph-
CA-using-H. Moreover, if the instance is feasible, then the algorithm returns a solution hypergraph that is
near-uniform and contains O(n2) hyperedges, where n is the number of vertices in the input hypergraph.

Our algorithm for Theorems 3.2 and 3.3 are LP-based. The associated LPs can be solved in strongly
polynomial time. However, the LP-solving time is large, so we refrain from stating the run-times explicitly. In
contrast, our algorithm for Theorem 3.1 is combinatorial and hence, we are able to provide an explicit bound
on the run-time. We refer the reader to Table 1 for a list of graph/hypergraph connectivity augmentation
problems using edges/hyperedges, previously known results, and our results.

Problem Complexity Status
DS-Graph-CA-using-E Strong Poly [47]
DS-Hypergraph-CA-using-E NP-comp [41,88]

DS-Hypergraph-CA-using-H
Psuedo Poly [106]

O(n7(n+m)2) time (Thm 3.1)

DS-Hypergraph-CA-using-near-uniform-H
Pseudo Poly [17]

Strong Poly (Thm 3.2)

DS-Simul-Hypergraph-CA-using-H
Pseudo Poly [17]

Strong Poly (Thm 3.3)

DS-Simul-Hypergraph-CA-using-near-uniform-H
Pseudo Poly [17]

Strong Poly (Thm 3.3)

Table 1: Complexity of Graph and Hypergraph Connectivity Augmentation Problems using Edges and
Hyperedges. Problems having “Near-Uniform” in their title are similar to the corresponding problems
without “Near-Uniform” in their title but have the additional requirement that the returned solution
hypergraph be near-uniform. Here, n and m denote the number of vertices and hyperedges respectively in
the input hypergraph.

3.2 Degree-Specified Skew-Supermodular Cover Problems
In this section we present extensions of the results from the previous section to a general function cover
problem. We first recall certain definitions needed to describe the general function cover problems.

Definition 3.3. Let V be a finite set, (H = (V,E), w : E → Z+) be a hypergraph, and p : 2V → Z be a set
function.

1. The hypergraph (H,w) weakly covers the function p if b(H,w)(X) ≥ p(X) for every X ⊆ V .

2. The hypergraph (H,w) strongly covers the function p if d(H,w)(X) ≥ p(X) for every X ⊆ V .

We will be interested in the problem of finding a degree-specified hypergraph that strongly/weakly covers
a given function p. In all our applications (including DS-Hypergraph-CA-using-H), the function p of
interest will be skew-supermodular and/or symmetric.

Definition 3.4. Let p : 2V → Z be a set function. We will denote the maximum function value of p by Kp,
i.e., Kp := max{p(X) : X ⊆ V }. The set function p

1. is symmetric if p(X) = p(V −X) for every X ⊆ V , and
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2. is skew-supermodular if for every X,Y ⊆ V , at least one of the following inequalities hold:

(a) p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). If this inequality holds, then we say that p is locally
supermodular at X,Y .

(b) p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X). If this inequality holds, then we say that p is locally
negamodular at X,Y .

We will assume access to the skew-supermodular function p via the following oracle.

Definition 3.5. Let p : 2V → Z be a set function. p-max-sc-Oracle
(
(G0, c0) , S0, T0, y0

)
takes as input a

hypergraph (G0 = (V,E0), c0 : E0 → Z+), disjoint sets S0, T0 ⊆ V , and a vector y0 ∈ RV ; the oracle returns
a tuple (Z, p(Z)), where Z is an optimum solution to the following problem:

max
{
p(Z)− d(G0,c0)(Z) + y0(Z) : S0 ⊆ Z ⊆ V − T0

}
. (p-max-sc-Oracle)

We note that p-max-sc-Oracle is strictly stronger than the function evaluation oracle2: function eval-
uation oracle can be implemented using one query to p-max-sc-Oracle while it is impossible to maximize
a skew-supermodular function using polynomial number of queries to its function evaluation oracle [61].
However, we will see later that p-max-sc-Oracle can indeed be implemented in strongly polynomial time for
the functions p of interest to our applications. In our algorithmic results, we will ensure that the size of
hypergraphs (G0, c0) used as inputs to p-max-sc-Oracle are polynomial in the input size (in particular, the
number of hyperedges in these hypergraphs will be polynomial in the size of the ground set V ). We now
describe the general function cover problems that will be of interest to this work.

Strong Cover Problem. In all our applications, we will be interested in obtaining a degree-specified strong
cover of a function in strongly polynomial time.

Definition 3.6 (DS-Sym-Skew-SupMod-StrongCover-using-H). Degree-specified symmetric skew-
supermodular strong cover using hyperedges problem is defined as follows:

Input: A degree requirement function m : V → Z≥0 and
a symmeric skew-supermodular function p : 2V → Z via p-max-sc-Oracle.

Goal: Verify if there exists a hypergraph (H = (V,E), w : E → Z+) such that
b(H,w)(u) = m(u) for every u ∈ V and (H,w) strongly covers the function p,
and if so, then find such a hypergraph.

DS-Sym-Skew-SupMod-StrongCover-using-H was introduced by Bernáth and Király [17] as a gener-
alization of DS-Hypergraph-CA-using-H. They showed that it is impossible to solve DS-Sym-Skew-
SupMod-StrongCover-using-H using polynomial number of queries to the function evaluation oracle.
They suggested access to p-max-sc-Oracle and we work in the same function access model as Bernáth
and Király. We note that it is not immediately clear if feasible instances of DS-Sym-Skew-SupMod-
StrongCover-using-H admit solution hypergraphs with polynomial number of hyperedges , so member-
ship of the problem in NP is not obvious.

Weak Cover Problem. Although our applications will be concerned with degree-specified strong cover,
our techniques will be concerned with degree-specified weak cover problems.

Definition 3.7 (DS-Skew-SupMod-WeakCover-using-H). Degree-specified skew-supermodular weak
cover using hyperedges problem is defined as follows:

2For a function p : 2V → Z, the function evaluation oracle takes a subset X ⊆ V as input and returns p(X).
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Input: A degree requirement function m : V → Z≥0 and
a skew-supermodular function p : 2V → Z via p-max-sc-Oracle.

Goal: Verify if there exists a hypergraph (H = (V,E), w : E → Z+) such that
∑

e∈E w(e) = Kp,
b(H,w)(u) = m(u) for every u ∈ V , and (H,w) weakly covers the function p,
and if so, then find such a hypergraph.

We note that if a hypergraph (H = (V,E), w : E → Z+) strongly covers a function p : 2V → Z,
then it also weakly covers the function p; the converse statement is false3. However, imposing the con-
straint

∑
e∈E w(e) = Kp implies the converse—we elaborate on this now. We note that the requirement∑

e∈E w(e) = Kp is present in DS-Skew-SupMod-WeakCover-using-H but not in DS-Sym-Skew-
SupMod-StrongCover-using-H. Firstly, if we drop this constraint from the definition of DS-Skew-
SupMod-WeakCover-using-H, then feasible instances of the resulting problem admit trivial solutions4.
Thus, imposing this constraint makes the problem non-trivial. Secondly, Szigeti [106] showed that if an
instance of DS-Skew-SupMod-WeakCover-using-H is feasible, then it admits a solution hypergraph
(H = (V,E), w : E → Z+) satisfying the constraint

∑
e∈E w(e) = Kp. Moreover, Bernáth and Király [17]

observed that if a hypergraph (H = (V,E), w : E → Z+) with
∑

e∈E w(e) = Kp weakly covers a symmetric
skew-supermodular function p, then (H,w) also strongly covers p. Thus, the converse of the previously
mentioned relationship between weak and strong covers is in fact true after imposing the constraint. The
observations of Szigeti [106] and Bernath and Kiraly [17] together imply that in order to solve DS-Sym-
Skew-SupMod-StrongCover-using-H, it suffices to solve the DS-Skew-SupMod-WeakCover-using-
H problem for the same function p. Our result below shows that feasible instances of DS-Skew-SupMod-
WeakCover-using-H admit a solution hypergraphs with O(|V |) distinct hyperedges; moreover, these
solution hypergraphs can be computed in strongly polynomial time. Thus, our result also shows implies a
strongly polynomial-time algorithm for DS-Sym-Skew-SupMod-StrongCover-using-H.

Theorem 3.4 ( [22]). There exists an algorithm to solve DS-Skew-SupMod-WeakCover-using-H that
runs in time O(|V |5) using O(|V |4) queries to p-max-sc-Oracle, where V is the ground set of the input
instance. Moreover, if the instance is feasible, then the algorithm returns a solution hypergraph that contains
at most 4|V | hyperedges. For each query to p-max-sc-Oracle made by the algorithm, the hypergraph (G0, c0)
used as input to the query has O(|V |) vertices and O(|V |) hyperedges.

Near-Uniform and Simultaneous Covers. Bernáth and Király [17] strengthened Szigeti’s result [106]
via an LP-based approach. They showed that if an instance of DS-Skew-SupMod-WeakCover-using-H
is feasible, then it admits a solution hypergraph that is near-uniform. Their approach is also algorithmic,
but the run-time of their algorithm is only pseudo-polynomial (again, owing to the dependence on Kp

which may not be polynomial in |V |). Our next result shows that feasible instances of DS-Skew-SupMod-
WeakCover-using-H admit solutions with linear number of distinct, near-uniform hyperedges. Moreover,
such solution hypergraphs can be constructed in strongly polynomial time.

Theorem 3.5 ( [22]). There exists an algorithm to solve DS-Skew-SupMod-WeakCover-using-H that
runs in poly(|V |) time using poly(|V |) queries to p-max-sc-Oracle, where V is the ground set of the input
instance. Moreover, if the instance is feasible, then the algorithm returns a solution hypergraph that is near-
uniform and contains O(|V |) hyperedges. For each query to p-max-sc-Oracle made by the algorithm, the
hypergraph (G0, c0) used as input to the query has O(|V |) vertices and O(|V |) hyperedges.

Bernáth and Király’s [17] LP-based approach also helped in addressing the problem of simultaneous weak
covers—namely, DS-Simul-Skew-SupMod-WeakCover-using-H—where the goal is to compute a hyper-
graph that satisfies degree requirements and is simultaneously a weak cover for two given input functions.

3For example, consider the function p : 2V → Z defined by p(X) := 1 for every non-empty proper subset X ⊊ V and
p(∅) := p(V ) := 0, and the hypergraph (H = (V,E := {{u} : u ∈ V }), w : E → {1}).

4Consider the hypergraph (H = (V,E), w : E → Z+), where E := {{u} : u ∈ V, m(u) ≥ 1} with w({u}) := m(u) for every
{u} ∈ E.
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Problem Complexity Status

DS-Skew-SupMod-WeakCover-using-H
Pseudo Poly [106]

Strong Poly (Thm 3.4)

DS-Sym-Skew-SupMod-StrongCover-using-H
Pseudo Poly [106]

Strong Poly*

DS-Skew-SupMod-WeakCover-using-near-uniform-H
Pseudo Poly [17]

Strong Poly (Thm 3.5)

DS-Sym-Skew-SupMod-StrongCover-using-near-uniform-H
Pseudo Poly [17]

Strong Poly*

DS-Simul-Skew-SupMod-WeakCover-using-near-uniform-H
Pseudo Poly [17]

Strong Poly (Thm 3.6)

DS-Simul-Sym-Skew-SupMod-StrongCover-using-near-uniform-H
Pseudo Poly [17]

Strong Poly*

Table 2: Complexity of degree-specified skew-supermodular cover using hyperedges problems. Problems
having “Near-Uniform” in their title are similar to the corresponding problems without “Near-Uniform”
in their title but have the additional requirement that the returned solution hypergraph be near-uniform.
Results marked with an asterisk are not included in this proposal for brevity, but can be found in the
complete version of the ICALP’24 paper [22].

They gave a complete characterization for the existence of a feasible solution to DS-Simul-Skew-SupMod-
WeakCover-using-H. Moreover, they showed that if an instance is feasible, then it admits a solution
hypergraph that is near-uniform. Their proof is algorithmic, but the run-time of their algorithm is only
pseudo-polynomial (again, owing to the dependence on Kp). Our next result shows that feasible instances
of DS-Simul-Skew-SupMod-WeakCover-using-H admit solutions with at most quadratic number of
distinct, near-uniform hyperedges. Moreover, such solution hypergraphs can be constructed in strongly
polynomial time.

Theorem 3.6 ( [22]). There exists an algorithm to solve DS-Simul-Skew-SupMod-WeakCover-using-
H that runs in poly(|V |) time using poly(|V |) queries to q-max-sc-Oracle and r-max-sc-Oracle, where V is
the ground set of the input instance. Moreover, if the instance is feasible, then the algorithm returns a solution
hypergraph that is near-uniform and contains O(|V |2) hyperedges. For each query to q-max-sc-Oracle and
r-max-sc-Oracle made by the algorithm, the hypergraph (G0, c0) used as input to the query has O(|V |)
vertices and O(|V |2) hyperedges.

Our algorithm for Theorem 3.4 is combinatorial and hence, we are able to provide an explicit bound on
the run-time. In contrast, our algorithms for Theorems 3.5 and 3.6 are LP-based. These LPs are solvable in
strongly polynomial time, but their run-time is large, so we refrain from stating the run-times explicitly. We
refer to Table 2 for a list of degree-specified skew-supermodular cover using hyperedges problems, previously
known results, and our results. The results for strong cover problems follow from our results for weak cover
problems.

3.3 Applications
Theorems 3.2 and 3.3 can be seen as corollaries of Theorems 3.5 and 3.6 respectively by reducing the
augmentation problems to appropriate function cover problems. In this section, we provide two additional
applications of Theorem 3.4. We note that the corresponding variants involving simultaneous augmentation
and near-uniform hyperedges can also be defined and solved in strongly polynomial time as applications of
Theorems 3.5 and 3.6. Moreover, the appropriate optimization variants of the applications can also be solved
in strongly polynomial time by reduction to the degree-specified version of the problems and applying our
results.
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3.3.1 Degree-specified hypergraph node-to-area connectivity augmentation using hyperedges

The graph node-to-area connectivity augmentation using edges problem was solved by Ishii and Hagiwara
[67]. Bernáth and Király [17] proposed a hypergraphic variant of this problem that we describe now.

Definition 3.8 (DS-HyperGraph-Node-to-Area-CA-using-H). The degree-specified hypergraph node-
to-area connectivity augmentation using hyperedges problem is defined as follows:

Input: Degree requirement function m : V → Z≥0,
hypergraph (G = (V,E), c : E → Z+),
a collection W ⊆ 2V of subsets of V , and
target connectivity function r : W → Z+.

Goal: Verify if there exists a hypergraph (H = (V,EH), w : EH → Z+) such that
λ(G+H,c+w)(u,W ) ≥ r(W ) for every W ∈ W and u ∈ V −W , and
b(H,w)(u) = m(u) for every u ∈ V ,
and if so, then find such a hypergraph.

Bernáth and Király [17] showed that feasible instances of DS-HyperGraph-Node-to-Area-CA-using-
H admit a near-uniform hypergraph as a feasible solution and such a solution can be found in pseudo-
polynomial time. Our next result implies a strongly polynomial-time algorithm for this problem.

Theorem 3.7. There exists a strongly polynomial time algorithm to solve DS-HyperGraph-Node-to-
Area-CA-using-H. Moreover, if the instance is feasible, then the algorithm returns a solution hypergraph
that is near-uniform and contains O(n) hyperedges, where n is the number of vertices in the input hypergraph.

3.3.2 Degree-constrained mixed-hypergraph connectivity augmentation using hyperedges.

Preliminaries. The notion of mixed-hypergraph generalizes undirected graphs/hypergraphs and directed
graphs/hypergraphs (e.g., see [50]). A mixed-hypergraph (G = (V,A), c : A → Z+) consists of a finite set V
of vertices and a set A of hyperarcs with weights c(e) for every e ∈ A, where each hyperarc e ∈ A is specified
by an ordered tuple (tails(e), heads(e), heads-tails(e)) satisfying tails(e), heads(e), heads-tails(e) ⊆ V with
tails(e)∩heads(e) = ∅, tails(e)∩heads-tails(e) = ∅, heads(e)∩heads-tails(e) = ∅, tails(e)∪heads-tails(e) ̸= ∅
and heads(e) ∪ heads-tails(e) ̸= ∅. For an undirected hypergraph (H = (V,EH), wH : EH → Z+), we define
an associated mixed-hypergraph (

−→
H = (V,

−→
EH), w−→

H
:
−→
EH → Z+) where for every hyperedge eH ∈ EH , we

introduce a hyperarc e−→
H

:= (tails(e−→
H
) = ∅, heads(e−→

H
) = ∅, heads-tails(e−→

H
) = eH) into

−→
EH with weight

w−→
H
(e−→

H
) = wH(eH). For a set X ⊆ V , we define δinG (X) := {e ∈ A : (heads(e) ∪ heads-tails(e)) ∩ A ̸=

∅, (tails(e) ∪ heads-tails(e)) ∩ (V \ A) ̸= ∅} and the function din(G,w)
: 2V → Z≥0 defined by din(G,w)(X) :=∑

e∈δinG (X) w(e) for every X ⊆ V . For distinct vertices u, v ∈ V , we define λ(G,w)(u, v) := min{din(G,w)(X) :

v ∈ X ⊆ V − {u}}. We note that λ(G,w)(u, v) is not necessarily equal to λ(G,w)(v, u) for distinct vertices
u, v ∈ V . Let r ∈ V be a designated root vertex. If λ(G,w)(v, r) ≥ k and λ(G,w)(r, v) ≥ ℓ for every v ∈ V \{r},
then the mixed-hypergraph is said to be (k, ℓ)-rooted-arc-connected.

Definition 3.9 (DC-Mixed-HyperGraph-Global-CA-using-H). The degree-constrained mixed-hypergraph
global connectivity augmentation using hyperedges problem is defined as follows:
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Input: Degree constraint function m : V → Z≥0,
mixed-hypergraph (G = (V,A), c : A → Z+),
root vertex r ∈ V , and
integers k, ℓ ∈ Z+.

Goal: Verify if there exists a undirected hypergraph (H = (V,EH), w : EH → Z+) such that
b(H,w)(u) ≤ m(u) for every u ∈ V , and
the mixed-hypergraph (G+

−→
H, c+ w−→

H
) is (k, ℓ)-rooted-arc-connected,

and if so, then find such a hypergraph.

Bernáth and Király [17] introduced this problem and showed a complete characterization for the existence
of a feasible solution. They also showed that for feasible instances, there exists a feasible solution that is
also near-uniform. Our next result implies a strongly polynomial-time algorithm for this problem.

Theorem 3.8. There exists a strongly polynomial time algorithm to solve DC-Mixed-HyperGraph-
Global-CA-using-H. Moreover if the instance is feasible, then the algorithm returns a solution hypergraph
that is near-uniform and contains O(n) hyperedges, where n is the number of vertices in the input hypergraph.

3.4 Open Problems
In this section, we list some open problems that arise as a result of our work.

1. We mentioned that the past few years have seen exciting developments for DS-Graph-CA-using-E
culminating in near-linear time algorithms for the problem [24, 25, 26]. Is it possible to get analogous
results for hypergraphs? In particular, can we solve DS-Hypergraph-CA-using-H in near-linear
time?

2. We define the size of a hypergraph to be the sum of the sizes of the hyperedges (and not simply the
number of hyperedges). Our results show that for a feasible instance of DS-Hypergraph-CA-using-
H, there exists a solution hypergraph in which the number of hyperedges is linear. Consequently,
the size of such a solution hypergraph is quadratic in the number of vertices. However, the following
structural question is open: for feasible instances of DS-Hypergraph-CA-using-H, does there exist
a solution hypergraph whose size is linear in the number of vertices? We believe that answering this
question would be a helpful stepping stone towards answering the previous algorithmic question.

3. The recent fast algorithms for DS-Graph-CA-using-E [24,25,26] rely on the fast construction of the
family of extreme sets for the graph cut function. These fast construction algorithms heavily leverage
the fact that the extreme set family is laminar. We note that the family of extreme sets is laminar for
any posimodular function [90]. The hypergraph cut function is symmetric and submodular, and thus
also posimodular. Is it possible to compute the extreme set family of hypergraphs in near-linear time?

4 Vertex Deletion to Reduce Density
In this section, we describe our results from ongoing work on GraphDD and SupmodDD, and also results
for FVS and PFDS problems which are journal submission [30].

4.1 Density Deletion Set

We recall that the density of a graph G = (V,E) is defined as λ∗
G := maxS⊆V

|E[S]|
|S| . We also recall the

GraphDD problem which will be the subject of this section: the input is a graph G = (V,E), vertex deletion
costs c : V → R+, and a density target ρ. The goal is to compute a set of vertices F ⊆ V of minimum cost
c(F ) such that λ∗

G−F ≤ ρ. When the target density ρ is fixed, we refer to the problem as ρ-GraphDD
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Approximation Hardness. Our first result shows that ρ-GraphDD is o(log n)-inapproximable for all
ρ > 1.

Theorem 4.1 (Ongoing Work). For every constant ρ > 1, there is no o(log n)-approximation for ρ-GraphDD
assuming P ̸= NP , where n is the number of vertices in the input instance.

We prove Theorem 4.1 via an approximation preserving reduction from the SetCover problem. In light
of connections between GraphDD and various other problems, this approximation hardness is somewhat
surprising. In fact, Theorem 4.1 basically resolves the approximability of ρ-GraphDD and shows that the
problem exhibits a sharp phase transition: it admits a 2-approximation for ρ ≤ 1 (via Fujito’s results [52])
and becomes o(log n)-inapproximable for ρ > 1.

Bicriteria Approximation. Our next result is a bicriteria approximation for ρ-GraphDD .

Theorem 4.2 (Ongoing Work). There exists a polynomial time algorithm which takes as input a graph
G = (V,E), vertex deletion costs c : V → R≥0, a target density ρ ∈ R, and an error parameter ϵ ∈ (0, 1/2),
and returns a set S ⊆ V such that:

1. λ∗
G−S ≤

(
1

1−2ϵ

)
· ρ,

2.
∑

u∈S cu ≤
(
1
ϵ

)
· OPT,

where OPT denotes the cost of an optimum solution to ρ-GraphDD on the instance (G, c).

We prove Theorem 4.2 by rounding the LP relaxation of a new ILP formulation for GraphDD based on
the connections between density and fractional orientations—we omit the details of this LP here for brevity
(but we elaborate more on this connection in Section 4.3.1). A somewhat surprising phenomenon here is
that while we were able to get a good bicriteria result from rounding this LP, we were able to show that the
integrality gap of this LP is actually Ω(n) even for 2-GraphDD.

Remark 4.1. Since we have a bicriteria approximation algorithm for GraphDD by Theorem 4.2, it is
natural to wonder whether this would imply anything for SetCover via the reduction mentioned in the
remark above. Unfortunately, our reduction is quite brittle from a bicriteria standpoint—the density of the
GraphDD instance constructed via the reduction is already very close to what we set to be the target density.
In particular, the empty set would be a valid bicriteria-approximate solution, thereby giving us no information
about the set cover instance.

4.2 Supermodular Density Deletion Set

The density of the supermodular function f is defined as λ∗
f := maxS⊆V

f(S)
|S| . We define the SupmodDD

problem below which naturally generalizes the GraphDD problem.

Definition 4.1 (SupmodDD). The problem is defined as follows:

Input: Supermodular function f : 2V → Z,
Element deletion costs c : V → R+, and
Positive integer ρ ∈ Z+.

Goal: Compute argmin{c(F ) : F ⊆ V and λ∗
f |V −F

≤ ρ}.

Approximability. For a function f : 2V → R, we define the marginal f(v|S) := f(S + v)− f(S) for every
v ∈ V and S ⊆ V . Our first result shows that there is a polynomial time approximation algorithm for
ρ-SupmodDD when ρ is integer-valued, where the approximation factor depends on the maximum marginal
value of the input function.
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Theorem 4.3 (Ongoing work). ρ-SupmodDD for input function f : 2V → Z and integer-valued ρ admits
a polynomial time O(log (maxv∈V f(v|V − v)))-approximation algorithm.

We show Theorem 4.3 via a reduction to SubmodCover. As part of this proposal, we also aim explore
this connection between SubmodCover and ρ-SupmodDD further. In fact, in going work, we also prove
that SubmodCover reduces to 1-SupmodDD, thus essentially showing the equivalence of SubmodCover
and SupmodDD. We believe that it is useful to have this equivalence explicitly known given that vertex
deletion problems arise naturally but seem different from covering problems on first glance.

Bicriteria Approximation. Our next result is a bicriteria algorithm for SupmodDD. Unlike the case of
graphs, it is not clear how to write an integer programming formulation for SupmodDD whose LP-relaxation
is polynomial-time solvable. Instead, we take inspiration from the very recent work of [113] on vertex deletion
to reduce treewidth. We design a combinatorial randomized algorithm that yields a bi-criteria approximation
for SupmodDD, where the bicriteria approximation bounds are based on a parameter cf that depends on
the input supermodular function f . The parameter cf was defined in a recent work on DSS to unify the
analysis of the greedy peeling algorithm [35]. We now define the parameter.

Definition 4.2 ( [35]). For a normalized supermodular function f : 2V → R≥0, we define

cf := max

{∑
u∈S f(u|S − u)

f(S)
: S ⊆ V

}
.

We note that 1 ≤ cf ≤ |V | and moreover, cf = 1 if and only if the function f is modular. If f is the
induced edge function of a graph (i.e., f(S) := |E(S)| for every S ⊆ V where G = (V,E) is a graph), then
cf ≤ 2. This follows from the observation that the sum of degrees is at most twice the number of edges in a
graph. Similarly, if f is the induced edge function of a hypergraph with rank r (i.e., all hyperedges have size
at most r), then cf ≤ r. We refer the reader to [35, 110] for bounds on the parameter cf for the function f
arising in the non-trivial setting of p-mean densest subgraph when p ≥ 1. We show the following bicriteria
approximation for SupmodDD.

Theorem 4.4 (Ongoing work). There exists a randomized polynomial time algorithm which takes as input a
normalized, monotone supermodular function f : 2V → Z (given by oracle access), element costs c : V → R+,
a target density ρ ∈ R, and an error parameter ϵ ∈ (0, 1), and returns a set S ⊆ V such that:

1. λ∗
f |V −S

≤ cf (1 + ϵ) · ρ,

2. E[c(S)] ≤ cf (1 + 1/ϵ) · OPT,

where OPT denotes the cost of an optimal ρ-SupmodDD.

Our algorithm to prove Theorem 4.4 is based on the following simple idea. Suppose that we had the
following two capabilities: (1) a preprocessing step that could modify any input function so that it satisfies
additional properties without changing the cost of the optimal solution, and (2) a way to assign non-negative
potentials π : V → R≥0 to the elements of the ground set of the modified function such that the potential
value π(X) of optimal solution X is large, say at least α · π(V ). Then, a natural algorithm—at least
when the vertex deletion costs are uniform—would be to exhaustively perform the following two steps: do
the preprocessing of step (1), compute the potentials of step (2), sample a vertex in proportion to the
potentials, define a residual instance and repeat. This would ensure an α-approximation for the problem
in expectation via a martingale argument. Unfortunately, the hardness result from Theorem 4.1 suggests
that we are unlikely to obtain good vertex potentials for ρ-SupmodDD in general. However, we leverage
supermodularity and show that if the density of the input function is at least β times the target density,
then we can indeed find such good vertex potentials. This gives us an (α, β)-bicriteria guarantee, where
the values α and β are as given in Theorem 4.4. The preprocessing step we use is a truncation of the
dense decomposition [63] for the supermodular function, while the potential values we use are based on the
marginal gains of the supermodular function [35]. Moreover, since the cost function to delete elements may
be arbitrary we sample a vertex u in proportion its potential-to-cost ratio, i.e. π(u)/c(u).
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4.3 Pseudoforest Deletion Set

Preliminaries. A graph G = (V,E) is a 2-pseudotree if it is connected and has |E| ≥ |V | + 1 (i.e., the
graph has at least 2 edges in addition to a spanning tree). We will denote the following polyhedra as weak
density polyhedron and 2-pseudotree cover polyhedron respectively, and the constraints describing them as
weak density constraints and 2-pseudotree cover constraints respectively:

PWD(G) :=

{
x ∈ RV

≥0 :
∑

u∈S
(dS(u)− 1)xu ≥ |E[S]| − |S| ∀S ⊆ V

}
, and (1)

P2-PT-cover(G) :=

{
x ∈ RV

≥0 :
∑

u∈U
xu ≥ 1 ∀U ⊆ V such that G[U ] contains a 2-pseudotree

}
. (2)

Weak density constraints and 2-pseudotree covering constraints are valid for PFDS. In particular, the fol-
lowing are ILP formulations for PFDS:

min

{∑
u∈V

cuxu : x ∈ PWD(G) ∩ ZV

}
and (PFDS-IP: WD)

min

{∑
u∈V

cuxu : x ∈ PWD(G) ∩ P2-PT-cover(G) ∩ ZV

}
. (PFDS-IP: WD-and-2PT-cover)

The local-ratio technique for PFDS due to Lin, Feng, Fu, and Wang [83] can be converted to a 2-approximation
for PFDS with respect to the following LP-relaxation via the primal-dual technique:

min

{∑
u∈V

cuxu : x ∈ PWD(G) ∩ P2-PT-cover(G)

}
. (PFDS-LP: WD-and-2PT-cover)

4.3.1 Poly-sized ILP Formulations and LP Integrality Gap

Our new ILP for PFDS is based on Charikar’s LP for the densest subgraph problem (DSG) [32]. In DSG,
the input is an undirected graph G = (V,E) and the goal is to find an induced subgraph G[S] of maximum
density. Charikar formulated an LP to compute the density of a graph. The dual of Charikar’s LP can be
interpreted as a fractional orientation problem. Using that dual, we obtain an ILP for PFDS. We describe
the details now. Via Charikar’s LP and previous results, one can show that an unweighted graph G has
density at most λ iff the edges of G can be fractionally oriented such that the total fractional in-degree at
every vertex is at most λ. For an edge e = uv we use variables ye,u and ye,v to denote the fractional amount
of e that is oriented towards u and v respectively. We recall that in PFDS the goal is to remove vertices
such that the residual graph has density at most 1. Thus, we also have variables xu for each u ∈ V to
indicate whether u is deleted. An edge e = uv is in the residual graph only if u and v are not deleted. These
observations allow us to formulate the an ILP for PFDS based on the polyhedron below. We refer to this as
the orientation polyhedron:

Porient(G) :=

(x, y) :

xu + xv + ye,u + ye,v ≥ 1 ∀e ∈ E : e = uv
xu +

∑
e∈δ(u) ye,u ≤ 1 ∀u ∈ V

xu ≥ 0 ∀u ∈ V
ye,u ≥ 0 ∀e ∈ δ(u), u ∈ V.

 .

We will denote the projection of Porient(G) to the x variables by Qorient(G). For non-negative costs
c : V → R≥0, we consider the following formulations:

min

{∑
u∈V

cuxu : x ∈ Qorient(G) ∩ ZV

}
and (PFDS-IP: orient)

min

{∑
u∈V

cuxu : x ∈ Qorient(G) ∩ P2-PT-cover(G) ∩ ZV

}
. (PFDS-IP: orient-and-2PT-cover)
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We will be interested in the integrality gap of the following LP-relaxation of (PFDS-IP: orient-and-2PT-cover):

min

{∑
u∈V

cuxu : x ∈ Qorient(G) ∩ P2-PT-cover(G)

}
. (PFDS-LP: orient-and-2PT-cover)

Theorem 4.5 ( [30]). For an input graph G = (V,E) with non-negative costs c : V → R≥0, (PFDS-IP: orient)
and (PFDS-IP: orient-and-2PT-cover) are integer linear programming formulations for PFDS. Moreover, we
have the following properties:

(1) Qorient(G) ⊆ PWD(G) for every graph G and there exist graphs G for which Qorient(G) ⊊ PWD(G).

(2) The LP (PFDS-LP: orient-and-2PT-cover) is solvable in polynomial time and its integrality gap is at
most 2.

In the full paper [30], we show a polynomial-time separation oracle for the family of 2-pseudotree cover
constraints via a reduction to steiner tree with constant number of terminals—this is a necessary step for
showing Theorem 4.5(2). We also construct an instance which exhbits that the integrality gap upper bound
mentioned in Theorem 4.5 is tight. As a consequence of Theorem 4.5, we immediately obtain an integer
linear program for PFDS whose LP-relaxation is solvable in polynomial time and has integrality gap at most
2 — namely (PFDS-IP: orient-and-2PT-cover). We also bound the integrality gap of the LP-relaxation of
(PFDS-IP: orient), but this will be based on extreme point properties and will be discussed next.

4.3.2 Extreme Point Properties

In this section, we present our extreme point results for polyhedra associated with PFDS. Our first result
below shows an extreme point result for the weak density polyhedron.

Theorem 4.6 ( [30]). Let G = (V,E) be a graph that is not a pseudoforest. For every extreme point x of
the polyhedron PWD(G), there exists a vertex u ∈ V such that xu ≥ 1/3.

Our proof of Theorem 4.6 is based on a conditional supermodularity property—if all coordinates are
small, then the weak density constraints have a supermodular property; we use this supermodular property
to show the existence of a structured basis for the extreme point which is subsequently used to arrive
at a contradiction. The conditional supermodularity property based proof has not previously appeared
in the literature on iterated rounding, and may be of independent interest. We note that Theorem 4.6
immediately implies that the integrality gap of the natural LP relaxation of (PFDS-IP: WD) is at most
3 by the iterated rounding framework [103]. However, we note this is interesting only from a polyhedral
viewpoint currently and is not of help from the perspective of algorithm design since implementing the
iterative rounding procedure requires solving the LP-relaxation in polynomial time, but we do not know how
to do this yet.

We next show that although Qorient(G) is a subset of PWD(G) (as shown in Theorem 4.5), the extreme
point result for PWD(G) given in Theorem 4.6 still holds for Qorient(G). We will say that an extreme point of
a polyhedron is minimal if for each variable, reducing the value of that variable by any ϵ > 0 while keeping
the rest of the variables unchanged results in a point that is outside the polyhedron. We note that extreme
points of a polyhedron along non-negative objective directions will be minimal.

Theorem 4.7 ( [30]). Let G = (V,E) be a graph that is not a pseudoforest. For every minimal extreme
point (x, y) of the polyhedron Porient(G), there exists a vertex u ∈ V such that xu ≥ 1/3.

Our proof of Theorem 4.7 is purely based on combinatorial arguments that rely on careful edge counting.
Similar to the previous Theorem 4.6, Theorem 4.7 immediately implies that the integrality gap of the natural
LP relaxation of (PFDS-IP: orient) is at most 3. We conclude the section with the remark that in the full
paper [30] we construct instances which exhibit that Theorem 4.6 and Theorem 4.7 are tight.
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4.4 Feedback Vertex Set

Preliminaries. The following polyhedron will be referred to as the cycle cover polyhedron:

Pcycle-cover(G) :=

{
x ∈ RV

≥0 :
∑

u∈U
xu ≥ 1 ∀U ⊆ V such that G[U ] contains a cycle

}
. (3)

We will denote the constraints describing the cycle cover polyhedron as cycle cover constraints. It is known
that the integrality gap of the natural LP over this polyhedron for FVS is Θ(log n) [8].

4.4.1 An intermediate LP

In this section, we formulate an intermediate ILP for FVS whose LP-relaxation has integrality gap at most
2, but it is unclear if this LP-relaxation is polynomial-time solvable. In the next section, we will formulate
a polynomial-sized ILP for FVS whose LP-relaxation is at least as strong as that of the intermediate ILP,
thereby achieving our goal of answering Question 10. The intermediate ILP will require the weak density
polyhedron (1) from Section 4.3. In particular, for non-negative costs c : V → R≥0, we consider the following
formulation and its LP-relaxation:

min

{∑
u∈V

cuxu : x ∈ PWD(G) ∩ Pcycle-cover(G) ∩ ZV

}
and (FVS-IP: WD-and-cycle-cover)

min

{∑
u∈V

cuxu : x ∈ PWD(G) ∩ Pcycle-cover(G)

}
. (FVS-LP: WD-and-cycle-cover)

Our result below shows that (FVS-IP: WD-and-cycle-cover) is an ILP for FVS whose LP-relaxation
(FVS-LP: WD-and-cycle-cover) has integrality gap at most 2.

Theorem 4.8 ( [30]). For an input graph G = (V,E) with non-negative costs c : V → R≥0, (FVS-IP: WD-and-cycle-cover)
is an integer linear programming formulation for FVS. Moreover, the integrality gap of (FVS-LP: WD-and-cycle-cover)
is at most 2.

Our proof of the second part of Theorem 4.8 is by exhibiting a primal-dual algorithm that closely follows
the algorithm of Chudak et. al. [39]. We note that we cannot solve (FVS-LP: WD-and-cycle-cover) since
we do not have a polynomial-time separation oracle for the family of weak density constraints (although we
do have a polynomial-time separation oracle for the family of cycle cover constraints). However, we use this
integrality gap result in the next section to obtain a polynomial-sized LP with the same integrality gap.

Remark 4.2. It is tempting to bound the integrality gap of (FVS-LP: WD-and-cycle-cover) by proving an
extreme point result similar to Theorem 4.6 and Theorem 4.7. However, in the full paper [30], we construct
an instance where there exists an extreme point optimum of (FVS-LP: WD-and-cycle-cover) all of whose
coordinates have value at most 1/3.

4.4.2 Poly-sized ILP Formulations and LP Integrality Gaps

In this section, we present the following main result that affirmatively answers Question 10.

Theorem 4.9 ( [30]). There exists a polynomial-sized integer linear programming formulation for FVS whose
LP-relaxation has integrality gap at most 2.

We prove Theorem 4.9 by showing three different polynomial-sized integer linear programs for FVS all
of whose LP-relaxations have integrality gap at most 2:

1. The first formulation is

min

{∑
u∈V

cuxu : x ∈ Qorient(G) ∩ Pcycle-cover(G) ∩ ZV

}
. (FVS-IP: orient-and-cycle-cover)
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By Theorem 4.5(1), we have that Qorient(G) ⊆ PWD(G). As a consequence of Theorem 4.8, the
integrality gap of the following LP-relaxation is also at most 2:

min

{∑
u∈V

cuxu : x ∈ Qorient(G) ∩ Pcycle-cover(G)

}
. (FVS-LP: orient-and-cycle-cover)

Both Qorient(G) and Pcycle-cover(G) admit a polynomial-sized description—see the full paper [30] for
a polynomial-sized description of Pcycle-cover(G)). Consequently, we have a polynomial-sized ILP for
FVS whose LP-relaxation has integrality gap at most 2.

2. The second formulation is the Chekuri-Madan formulation who, as we remarked earlier in Section 1.3.1,
formulated an ILP for Subset-FVS and showed that the integrality gap of its LP-relaxation is at most
13 [34]. We show that their LP-relaxation specialized for FVS has integrality gap at most 2 by proving
that it is at least as strong as (FVS-LP: orient-and-cycle-cover). Our result gives additional impetus
to improving the integrality gap of their LP-relaxation for Subset-FVS.

3. Our third formulation to prove Theorem 4.9 is based on the orientation perspective, but without
cycle cover constraints (as opposed to our first formulation). Here, we give an orientation based ILP
formulation whose associated polyhedron is contained in the strong density polyhedron considered by
Chudak et. al. [39]. Since the integrality gap of the LP-relaxation over the strong desnity polyhedron
is at most 2 (as shown by Chudak et. al. [39]), the integrality gap of our third formulation is also at
most 2.

4.5 Open Problems
In this section, we list some open problems that arose as a result of our work.

1. Does there exist a parallel O(1)-approximation algorithm for FVS?

2. Does there exist a (O(1), O(1))-bicriteria algorithm for SupmodDD? In particular, does there exist
a polynomial time algorithm that returns a set that has at most O(1) times the cost of the optimal
ρ-SupmodDD, and the density of the function obtained after deleting the returned set is O(ρ)?

3. Does the strong density polyhedron considered by Chudak et. al. for FVS have good extreme point
structure? In our full paper [30], we formulate a concrete conjecture on the extreme point structure
of this polyhedron. Resolving this conjecture would lead to alternative an LP-rounding algorithm for
approximating FVS and potentially provide insights into improving the approximation ratio for the
more general SubsetFVS problem [34, 44, 45]. Improving the approximation ratio of SubsetFVS
(either lower or upper bound) is also an open problem.

4. One of our main result shows that the integrality gap of the Chekuri-Madan LP [34], when specialized
for FVS, is at most 2. What is the integrality gap of the LP for the general SubsetFVS problem? In
the same work, Chekuri and Madan also formulate an LP for the SubsetFeedbackEdgeSet problem.
Resolving the integrality gap of this LP is also an open problem.
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