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Problem Definitions and Motivating Questions

Input: Undirected Graph G = (V, E) with vertex weights w : V → R+.

Feedback Vertex Set (FVS) : min
F⊆V

{w(F ) : G − F has no cycles}.

Hitting set LP: min{wT x : x ∈ Pcycle-cover(G)}, where

Pcycle-cover(G) :=

x ∈ RV
≥0 :

∑
u∈U

xu ≥ 1 ∀U ⊆ V : G[U ] is a cycle

 .

FVS is NP-hard and (2 − ε)-inapproximable under UGC.

FVS admits combinatorial 2-approx algorithm (local-ratio).

FVS admits LP-based 2-approx algorithm
(
primal-dual on min{wT x : x ∈ PSD(G)}

)
.

PSD(G) :=

x ∈ RV
≥0 :

∑
u∈S

(dS(u) − 1)xu ≥ |E[S]| − |S| + 1 ∀S ⊆ V : E[S] 6= ∅


Remark. Constructing a polytime separation oracle for PSD(G) constraints is an open problem.

Question 1.1. Does there exist an ILP formulation for FVS whose LP-relaxation can be solved in

polynomial time and has an integrality gap at most 2?

Conjecture 1.2 (open). Let x ∈ PSD(G) be an extreme point. Then, there exists u ∈ V such that

xu ≥ 1/2.

Subset Feedback Vertex Set (SFVS) : min
F⊆V

{w(F ) : G − F has no cycles containing terminals T ⊆ V }.

Terminal set T = V gives back FVS.

SFVS is NP-hard and (2 − ε)-inapproximable under UGC.

SFVS admits a combinatorial 8-approx algorithm (relaxed multicommodity flows).

SFVS admits LP-based 13-approx algorithm (Chekuri-Madan poly-sized labeling LP).

Remark. Determining the exact integrality gap of Chekuri-Madan LP for SFVS is an open problem.

Question 2.1. Is the integrality gap of Chekuri-Madan LP at most 2 for FVS?

PseudoForest Deletion Set (PFDS) : min
P⊆V

{w(P ) : Connected components of G − P have ≤ 1 cycle︸ ︷︷ ︸
G − P is a pseudoforest

}.

Hitting set LP: min{wT x : x ∈ P2PT-cover(G)}, where

P2PT-cover(G) :=

x ∈ RV
≥0 :

∑
u∈U

xu ≥ 1 ∀U ⊆ V : G[U ] contains ≥ 2 cycles


PFDS is NP-hard and (2 − ε)-inapproximable under UGC.

PFDS has a combinatorial 2-approx algorithm (local-ratio).

PFDS has a LP-based 2-apx algorithm (primal-dual on min{wT x : x ∈ PWD(G) ∩ P2PT-cover(G)})

PWD(G) :=

x ∈ RV
≥0 :

∑
u∈S

(dS(u) − 1)xu ≥ |E[S]| − |S| ∀S ⊆ V


Remark. Constructing a polytime separation oracle for PWD(G) constraints is an open problem

Question 3.1. Does there exist an ILP formulation for PFDS whose LP-relaxation can be solved in

polynomial time and has an integrality gap at most 2?

Question 3.2 (Motivated by Conjecture 1.2). Does there exists a constant α > 0 such that for

every extreme point x ∈ PWD(G), there exists u ∈ V with xu ≥ α.

Main Results.

New ILP Formulations.

Porient(G) :=


xu + xv + ye,u + ye,v ≥ 1 ∀e = {u, v} ∈ E

(x, y) : xu +
∑

e∈δ(u) ye,u ≤ 1 ∀u ∈ V

x, y ≥ 0


Qorient(G) :=

{
x ∈ RV : (x, y) ∈ Porient(G)

}
Remark 1. For every graph G, we have that Qorient(G) ⊆ PWD(G); moreover, there exist graphs for

which inclusion is strict.

Remark 2. The definition of Porient(G) is motivated by the dual of Charikar’s LP for Densest Subgraph.

The following is an ILP formulation for PFDS:

min{wT x : x ∈ Qorient(G) ∩ ZV }.

The following are two ILP formulations for FVS:

min{wT x : x ∈ PWD(G) ∩ Pcycle-cover(G) ∩ ZV }.

min{wT x : x ∈ Qorient(G) ∩ Pcycle-cover(G) ∩ ZV }.

Integrality Gap Results (Polytime Solvable Formulations).

Theorem 1. The integrality gap of the following LP is at most 2 for PFDS:

min{cT x : x ∈ Qorient(G) ∩ P2PT-cover(G)}.

Theorem 2. The integrality gap of the following LP is at most 2 for FVS:

min{wT x : x ∈ Qorient(G) ∩ Pcycle-cover(G)}.

Theorem 3. There exists a polynomial-sized ILP formulation for FVSwhose LP-relaxation has integrality

gap at most 2. In particular,

1. the integrality gap of min{cT x : x ∈ Qorient(G) ∩ Pcycle−cover(G)} is at most 2,
2. the integrality gap for the Chekuri-Madan LP for FVS is at most 2,
3. (informal) there exists an orientation-based LP without cycle-cover constraints with integrality gap

at most 2.

Extreme Point Results.

Theorem 4. Let G be graph that is not a pseudoforest and let x ∈ PWD(G) be an extreme point.

Then, there exists a vertex u ∈ V such that xu ≥ 1/3. Furthermore, there exists a graph G for which

the inequality is tight.

Remark. To prove Theorem 4, we use Conditional Uncrossing, a new technique described in the

next section of the poster.

Theorem 5. Let G be graph that is not a pseudoforest and let x ∈ Porient(G) be a minimal extreme

point. Then, there exists a vertex u ∈ V such that xu ≥ 1/3. Furthermore, there exists a graph G for

which the inequality is tight.

By using Theorem 4 and Theorem 5 with the iterated rounding framework, we immediately get

the following two corollaries.

Corollary 5.1. The integrality gap of the following LP is at most 3 for PFDS:

min{wT x : x ∈ Qorient(G)}.

Corollary 4.1. The integrality gap of the following LP is at most 3 for PFDS:

min{wT x : x ∈ PWD(G)}.

Conditional Uncrossing: A NewTechnique.

Extreme point properties of polyhedra (similar to Conjecture 1.2) can be shown when the con-

straints have underlying submodularity/supermodularity structure. This allows tight constraints at

extreme points to be uncrossed to get well-structured families (chain, laminar, cross-free, etc.) of

linearly independent tight constraints. However, recall that

PWD(G) :=

{
x ∈ RV

≥0 : |E[S]| − |S| −
∑
u∈S

(dS(u) − 1)xu︸ ︷︷ ︸
=:fx(S)

≤ 0 ∀S ⊆ V

}

=

{
x ∈ RV

≥0 :
∑

uv∈E[S]
(1 − xu − xv)

︸ ︷︷ ︸
=: px(S)

−
∑
u∈S

(1 − xu)︸ ︷︷ ︸
=: qx(S)

≤ 0 ∀S ⊆ V

}

Note that fx is not supermodular in general. Nevertheless, we prove Theorem 4 with the following

crucial observation.

Observation (Conditional Supermodularity). Let x ∈ PWD such that xu ≤ 1
2 for each u ∈ V . Then,

the function fx is supermodular (since px is supermodular and qx is modular).

Strategy to Prove Theorem 4

1. Consider an arbitrary extreme point x ∈ PWD(G).
2. Assume by way of contradiction that xu < 1/3 for each u ∈ V .

3. Consider the submatrix A of constraints of PWD(G) that are equations at the vector x.

4. Show that row-rank(A) < |V | = dimension (PWD (G)) = column-rank(A), a contradiction.

Additional Details I: Conditional Uncrossing Properties

Let x be an extreme point of PWD(G) such that xu < 1
2 for each u ∈ V and the family of tight sets

for x be T := {S ⊆ V : fx(S) = 0}. Let A, B ∈ T . Then,

A ∩ B 6= ∅,
A ∩ B, A ∪ B ∈ T ,

row(A) + row(B) = row(A ∩ B) + row(A ∪ B), i.e. constraint-matrix vectors of PWD(G) for tight
sets uncross.

Additional Details II: Conditional Basis

Let x ∈ PWD(G) be an extreme point such that xu < 1
3 for each u ∈ V . Let T := {S : fx(S) = 0}

and N Z := {u : xu 6= 0}. Then, there exists a family C ⊆ T such that

The family C is a chain family such that the vectors Rows(C) are linearly independent,
For each A, B ∈ C such that A ⊂ B, there exists a vertex u ∈ (B − A) ∩ N Z .

For each A ∈ C, there exist distinct vertices u, v ∈ A ∩ N Z ,

rank(Rows(C)) = |N Z|.

First three properties contradict the last property.
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