

Problem Definitions and Motivating Questions

Input: Undirected Graph G = (V, E) with vertex weights $w : V \to \mathbb{R}_+$. Feedback Vertex Set (FVS) : $\min_{F \subseteq V} \{w(F) : G - F \text{ has no cycles}\}.$

• Hitting set LP: $\min\{w^T x : x \in \mathcal{P}_{cycle-cover}(G)\}$, where

$$\mathcal{P}_{\text{cycle-cover}}(G) := \left\{ x \in \mathbb{R}_{\geq 0}^{V} : \sum_{u \in U} x_u \ge 1 \quad \forall U \subseteq V : G[U] \text{ is a cycle} \right\}.$$

- FVS is NP-hard and (2ϵ) -inapproximable under UGC.
- FVS admits combinatorial 2-approx algorithm (local-ratio).
- FVS admits LP-based 2-approx algorithm (primal-dual on $\min\{w^T x : x \in \mathcal{P}_S\}$

$$\mathcal{P}_{\mathsf{SD}}(G) := \left\{ x \in \mathbb{R}_{\geq 0}^V : \sum_{u \in S} (d_S(u) - 1) x_u \ge |E[S]| - |S| + 1 \quad \forall S \subseteq V : E[S] \neq \emptyset \right\}$$

Remark. Constructing a polytime separation oracle for $\mathcal{P}_{SD}(G)$ constraints is an open problem. **Question 1.1**. Does there exist an ILP formulation for FVS whose LP-relaxation can be solved in polynomial time and has an integrality gap at most 2?

Conjecture 1.2 (open). Let $x \in \mathcal{P}_{SD}(G)$ be an extreme point. Then, there exists $u \in V$ such that $x_u \ge 1/2.$

Subset Feedback Vertex Set (SFVS) : $\min_{F \subseteq V} \{ w(F) : G - F \text{ has no cycles containing terminals } T \subseteq V \}.$

- Terminal set T = V gives back FVS.
- SFVS is NP-hard and (2ϵ) -inapproximable under UGC.
- SFVS admits a combinatorial 8-approx algorithm (relaxed multicommodity flows).
- SFVS admits LP-based 13-approx algorithm (Chekuri-Madan *poly-sized* labeling LP).

Remark. Determining the exact integrality gap of Chekuri-Madan LP for SFVS is an open problem. **Question 2.1**. Is the integrality gap of Chekuri-Madan LP at most 2 for FVS?

PseudoForest Deletion Set (PFDS) : $\min_{P \subseteq V} \{w(P) : Connected components of <math>G - P$ have ≤ 1 cycle}

• Hitting set LP: $\min\{w^T x : x \in \mathcal{P}_{2\mathsf{PT-cover}}(G)\}$, where

$$\mathcal{P}_{2\mathsf{PT-cover}}(G) := \begin{cases} x \in \mathbb{R}_{\geq 0}^V : \sum_{u \in U} x_u \ge 1 & \forall U \subseteq V : G[U] \text{ contains} \ge 2 \text{ cy} \end{cases}$$

- PFDS is NP-hard and (2ϵ) -inapproximable under UGC.
- PFDS has a combinatorial 2-approx algorithm (local-ratio).
- PFDS has a LP-based 2-apx algorithm (primal-dual on $\min\{w^T x : x \in \mathcal{P}_{WD}(G) \cap \mathcal{P}_{2PT-cover}(G)\}$)

$$\mathcal{P}_{\mathsf{WD}}(G) := \left\{ x \in \mathbb{R}_{\geq 0}^{V} : \sum_{u \in S} (d_S(u) - 1) x_u \ge |E[S]| - |S| \qquad \forall S \subseteq V \right\}$$

Remark. Constructing a polytime separation oracle for $\mathcal{P}_{WD}(G)$ constraints is an open problem **Question 3.1**. Does there exist an ILP formulation for PFDS whose LP-relaxation can be solved in polynomial time and has an integrality gap at most 2?

Question 3.2 (Motivated by Conjecture 1.2). Does there exists a constant $\alpha > 0$ such that for every extreme point $x \in \mathcal{P}_{WD}(G)$, there exists $u \in V$ with $x_u \geq \alpha$.

Polyhedral (and Approximation) Aspects of FVS and PFDS

Shubhang Kulkarni

Main Results.

New ILP Formulations.

$$\mathcal{P}_{\text{orient}}(G) := \begin{cases} x_u + x_v + y_{e,u} + y_{e,v} \ge 1\\ (x,y) : x_u + \sum_{e \in \delta(u)} y_{e,u} \le 1\\ x,y \ge 0 \end{cases}$$
$$\mathcal{Q}_{\text{orient}}(G) := \left\{ x \in \mathbb{R}^V : (x,y) \in \mathcal{P}_{\text{orient}}(G) \right\}$$

Remark 1. For every graph G, we have that $\mathcal{Q}_{orient}(G) \subseteq \mathcal{P}_{WD}(G)$; moreover, there exist graphs for which inclusion is strict.

Remark 2. The definition of $\mathcal{P}_{orient}(G)$ is motivated by the dual of Charikar's LP for Densest Subgraph. The following is an ILP formulation for PFDS:

 $\min\{w^T x : x \in \mathcal{Q}_{\text{orient}}(G) \cap \mathbb{Z}^V\}.$

The following are two ILP formulations for FVS:

 $\min\{w^T x : x \in \mathcal{P}_{\mathsf{WD}}(G) \cap \mathcal{P}_{\mathsf{cycle-cover}}(G) \cap \mathcal{P}_{\mathsf{cycle \min\{w^T x : x \in \mathcal{Q}_{\mathsf{orient}}(G) \cap \mathcal{P}_{\mathsf{cvcle-cover}}(G)\}$

Integrality Gap Results (Polytime Solvable Formulations).

Theorem 1. The integrality gap of the following LP is at most 2 for PFDS: $\min\{c^T x : x \in \mathcal{Q}_{\mathsf{orient}}(G) \cap \mathcal{P}_{\mathsf{2PT-cover}}(G)\}.$

Theorem 2. The integrality gap of the following LP is at most 2 for FVS: $\min\{w^T x : x \in \mathcal{Q}_{\mathsf{orient}}(G) \cap \mathcal{P}_{\mathsf{cycle-cover}}(G)\}.$

Theorem 3. There exists a polynomial-sized ILP formulation for FVS whose LP-relaxation has integrality gap at most 2. In particular,

- . the integrality gap of $\min\{c^T x : x \in \mathcal{Q}_{orient}(G) \cap \mathcal{P}_{cycle-cover}(G)\}$ is at most 2,
- 2. the integrality gap for the Chekuri-Madan LP for FVS is at most 2,
- 3. (informal) there exists an orientation-based LP without cycle-cover constraints with integrality gap at most 2.

Extreme Point Results.

Theorem 4. Let G be graph that is not a pseudoforest and let $x \in \mathcal{P}_{WD}(G)$ be an extreme point. Then, there exists a vertex $u \in V$ such that $x_u \ge 1/3$. Furthermore, there exists a graph G for which the inequality is tight.

Remark. To prove Theorem 4, we use *Conditional Uncrossing*, a new technique described in the next section of the poster.

Theorem 5. Let G be graph that is not a pseudoforest and let $x \in \mathcal{P}_{orient}(G)$ be a minimal extreme point. Then, there exists a vertex $u \in V$ such that $x_u \ge 1/3$. Furthermore, there exists a graph G for which the inequality is tight.

By using Theorem 4 and Theorem 5 with the *iterated rounding* framework, we immediately get the following two corollaries.

Corollary 5.1. The integrality gap of the following LP is at most 3 for PFDS: $\min\{w^T x : x \in \mathcal{Q}_{\mathsf{orient}}(G)\}.$

Corollary 4.1. The integrality gap of the following LP is at most 3 for PFDS: $\min\{w^T x : x \in \mathcal{P}_{WD}(G)\}.$

$$\mathsf{SD}(G)\}$$

G - P is a pseudoforest

ycles

$$\forall e = \{u, v\} \in E \\ \forall u \in V$$

$$\cap \mathbb{Z}^V \}.$$

$$(Y) \cap \mathbb{Z}^V \}$$

Conditional Uncrossing: A New Technique.

linearly independent tight constraints. However, recall that

$$\mathcal{P}_{\mathsf{WD}}(G) := \left\{ x \in \mathbb{R}_{\geq 0}^{V} : |E[S]| - |S| - \sum_{u \in S} (d_{S}(u) - 1)x_{u} \le 0 \qquad \forall S \subseteq V \right\}$$
$$= \left\{ x \in \mathbb{R}_{\geq 0}^{V} : \sum_{\substack{uv \in E[S] \\ =: p_{x}(S)}} (1 - x_{u} - x_{v}) - \sum_{\substack{u \in S \\ =: q_{x}(S)}} (1 - x_{u}) \le 0 \qquad \forall S \subseteq V \right\}$$

Note that f_x is not supermodular in general. Nevertheless, we prove Theorem 4 with the following crucial observation.

Strategy to Prove Theorem 4

- 1. Consider an arbitrary extreme point $x \in \mathcal{P}_{WD}(G)$.
- 2. Assume by way of contradiction that $x_u < 1/3$ for each $u \in V$.

Additional Details I: Conditional Uncrossing Properties

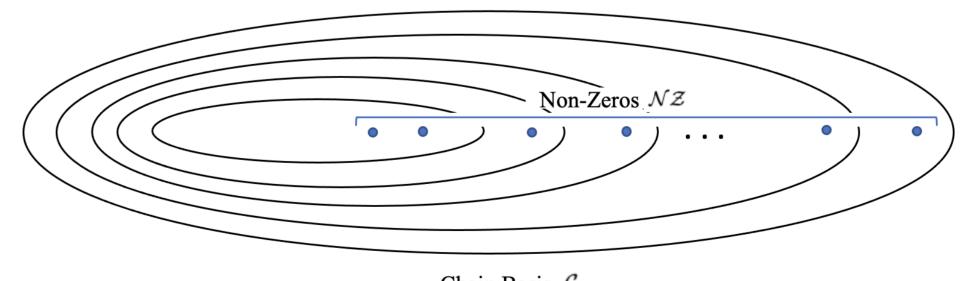
Let x be an extreme point of $\mathcal{P}_{WD}(G)$ such that $x_u < \frac{1}{2}$ for each $u \in V$ and the family of tight sets for x be $\mathcal{T} := \{S \subseteq V : f_x(S) = 0\}$. Let $A, B \in \mathcal{T}$. Then,

- $A \cap B \neq \emptyset$,
- $A \cap B, A \cup B \in \mathcal{T}$,
- sets uncross.

Additional Details II: Conditional Basis

Let $x \in \mathcal{P}_{WD}(G)$ be an extreme point such that $x_u < \frac{1}{3}$ for each $u \in V$. Let $\mathcal{T} := \{S : f_x(S) = 0\}$ and $\mathcal{NZ} := \{u : x_u \neq 0\}$. Then, there exists a family $\mathcal{C} \subseteq \mathcal{T}$ such that

- For each $A \in \mathcal{C}$, there exist distinct vertices $u, v \in A \cap \mathcal{NZ}$,
- $\operatorname{rank}(\operatorname{Rows}(\mathcal{C})) = |\mathcal{NZ}|.$



Chain Basis (

First three properties contradict the last property.

Extreme point properties of polyhedra (similar to Conjecture 1.2) can be shown when the constraints have underlying submodularity/supermodularity structure. This allows tight constraints at extreme points to be *uncrossed* to get well-structured families (chain, laminar, cross-free, etc.) of

Observation (Conditional Supermodularity). Let $x \in \mathcal{P}_{WD}$ such that $x_u \leq \frac{1}{2}$ for each $u \in V$. Then, the function f_x is supermodular (since p_x is supermodular and q_x is modular).

3. Consider the submatrix A of constraints of $\mathcal{P}_{WD}(G)$ that are equations at the vector x. 4. Show that $row-rank(A) < |V| = dimension (P_{WD}(G)) = column-rank(A)$, a contradiction.

• $row(A) + row(B) = row(A \cap B) + row(A \cup B)$, i.e. constraint-matrix vectors of $\mathcal{P}_{WD}(G)$ for tight

• The family C is a *chain family* such that the vectors Rows(C) are linearly independent,

• For each $A, B \in \mathcal{C}$ such that $A \subset B$, there exists a vertex $u \in (B - A) \cap \mathcal{NZ}$.